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Abstract  

A static-atomic model is described, which may be employed to evaluate the characteristic 
vibrational stiffness of an atomic lattice, given the pair-wise potential of the constituent atom. 
Because the vibrational stiffness is directly related to the resultant vibrational frequency 
spectrum of the lattice, the method may be used to infer the behavior of the characteristic lattice 
frequency as a function of lattice spacing. The characteristic frequency behavior is sufficient to 
determine the Grüneisen function, an important thermodynamic parameter relating to thermal 
behavior of a crystal lattice. The current method computes and utilizes several spring constants 
derived from a static lattice in order to infer the characteristic vibrational behavior. No atomic 
dynamics calculations involving either the equations of motion or modal (vibrational) analysis 
are required. As such, the method generally requires mere seconds of computation on today's 
generation of desktop workstations. Results indicate that the vibrational stiffness of the lattice 
is qualitatively distinct from the volumetric stiffness of the lattice, and, furthermore, that the 
resulting lattice behavior can be described, over a wide region of lattice spacing, by an analytical 
equation of state in terms of lattice frequency. 

u 



Acknowledgments 

The author would like to thank several people who have had a direct hand in improving 

this report. Dr. Andrew Dietrich of the U.S. Army Research Laboratory (ARL), through his 

many technical discussions, has permitted the author to more fully appreciate the breadth and 

nuances of the lattice-vibration problem. Dr. William P. Walters, also of ARL, made a number 

of valuable suggestions in the course of providing a thorough technical review of the work, for 

which the author is grateful. Mr. Eric Edwards, of LB&B, has provided yet another outstanding 

editorial review, as he has done on many other occasions in the past. The interactions with all 

of these individuals have made this report a more thorough, more accurate, and more readable 

document. The author would lastly give eternal thanks to his wife, Gabriele, who has provided 

complete support in all of the author's endeavors. 

m 



INTENTIONALLY LEFT BLANK. 

IV 



Table of Contents 

Page 

Acknowledgments       iii 

List of Figures         vii 

List of Tables       ix 

PART I—A Static Atomic Paradigm for Lattice Vibration 

1. Introduction     1 

2. Previous Models of the Grüneisen Function     2 

3. Non-Nearest-Neighbor Interactions     5 

4. Volumetric Distention     7 

5. Vibrational Distortion (Longitudinal)  9 

6. Vibrational Distortion (Transverse)     12 

7. Vibrational Stiffness (Aggregated) and Its Derivatives  13 

8. Results and Observations    16 

PART II—Macroscopic Lattice Behavior 

9. Mechanical Characteristics of the Lattice    33 

10. Thermal Characteristics of the Lattice     37 

11. A Frequency-Based Analytical Equation of State  44 

12. Comparison to Data  51 

13. Conclusions     59 

14. References     61 

Distribution List     63 

Report Documentation Page     81 



INTENTIONALLY LEFT BLANK. 

VI 



List of Figures 

Figure Page 

1. The pairwise and lattice behavior of an FCC lattice with a pairwise interaction 
decay rate of a = 2.5: (a) nondimensional force; (b) energy potential, depicting 
differing values for pairwise- and lattice-stiffness, r)         21 

2. A relative comparison of the volumetric stiffness, dFldk, to the vibrational 
stiffness, dFvib Idx, for an FCC lattice with a pairwise, interaction decay rate of 
a =1.5: (a) to 2.5 times the nominal stiffness; (b) to 10 times the nominal 
stiffness        27 

3. A relative comparison of the volumetric stiffness, dFldk, to the vibrational 
stiffness, dFvib Idx, for an FCC lattice with a pairwise, interaction decay rate of 
cc = 4          28 

4. The energy, force, and volumetric and vibrational stiffnesses for an FCC a = 2.5 
lattice, shown in comparison to each other (note that the stiffness functions are 
shown as positive in compression for convenience in visualization)      28 

5. The r and corresponding \|/ functions for an a = 2.5, BCC lattice, showing both 
the L and T components, as well as the aggregated function       30 

6. A comparison of the numerically computed (summed) lattice force [eqn (4-7), 
solid line] to that analytically evaluated by way of eqn (9-1) (dashed line), for an 
FCC lattice of: (a) a- 1.1; (b) a = 3; (c) a = 5         35 

7. The functional correlation of the (v|//?i4) function to (0^, for an a = 2.5, BCC 
lattice       38 

8. Comparison of 4/3 -y/V and dyldV for an a = 2.5 BCC lattice. Note that dxfldV 
equals (dy\r/dX)/(3X2)       40 

9. A comparison of the computed (summed) lattice properties to the analytical fit 
implied by eqns (10-3) and (10-4) for an a = 2.5, BCC lattice: (a) \|//V0; (b) T; (c) 
w/w0 (compression); and (d) co/(00 (expansion)         42 

10. A comparison of the lattice's energy potential and force (solid lines) to the 
analytical, frequency-based result (dashed lines): (a) FCC, a = 2 (expansion); (b) 
FCC, ct = 2 (compression); (c) FCC, a = 5 (expansion); (d) FCC, a = 5 
(compression).   Shown on (a) and (c) are lattice spacings corresponding to Xstab 

and to = 0         47 

11. A comparison of the summed energy and lattice force (solid lines) to the 
analytical forms of eqns (11-3) and (11-4) (dashed lines), for the FCC case of 
very low a = 1.1         49 

Vll 



12. The cold-compression and shock-Hugoniot curves for silver: (a) to 1.8 megabars; 
(b) to 5 megabars. Note that cold-compression data [21] are filled symbols and 
Hugoniot data [22,23] are open symbols         54 

13. The cold-compression and shock-Hugoniot curves for aluminum: (a) to 
2.5 megabars; (b) to 11 megabars.  Note that cold-compression data [16,24,25] 
are filled symbols and Hugoniot data [23,26] are open symbols      55 

14. The cold-compression and shock-Hugoniot curves for copper: (a) to 8 megabars; 
(b) to 25 megabars.  Note that cold-compression data [21,24] are filled symbols 
and Hugoniot data [23,26] are open symbols         56 

15. The cold-compression- and shock-Hugoniot curves for stainless steel to 
4 megabars. Note that cold-compression data [11] are filled symbols and 
Hugoniot data [23] are open symbols      57 

Vlll 



List of Tables 

Table Page 

1. Relative Values of Equilibrium Lattice Spacing as a Function of Pairwise 
Interaction Decay Rate  19 

2. Nondimensional Stiffnesses as a Function of Interaction Decay Constant  23 

3. Equilibrium Values for the Vibrational and Volumetric T  25 

4. Critical Lattice Spacings Associated with dy/dV = 0  32 

5. Values for Parameters K and K  50 

6. Parameters for Experimental Comparison  53 

IX 



INTENTIONALLY LEFT BLANK. 



PART I—A Static Atomic Paradigm for Lattice Vibration 

1. Introduction 

The determination of the vibrational behavior of a crystal lattice is fundamental to the 

understanding of the thermal behavior of crystalline materials. The magnitude and distribution 

of the lattice's vibrational spectrum was, for example, a key ingredient in the development of 

plausible specific-heat models by Debye; Born and von Karman [1]; and others early this century. 

Whereas the specific heat, Cv, relates the behavior of thermal energy and temperature at constant 

volume, V, it is the Grüneisen function, T, macroscopically given by T = -V (dp,h /dE!h)v, that 

relates the behavior of a lattice's thermal energy, Eth, to the thermal pressure, pth, at constant 

volume. 

At the atomic level, there is contribution to the Grüneisen function, Tt, associated with 

each mode of the lattice's vibrational spectrum, which is given by r, = -V(9v,/3V)r/v,, where 

V; denotes a frequency component of the vibrational spectrum. Historically [2], attempts to 

aggregate the T, components into a macroscopic value for T were accomplished with the use of 

two assumptions: (1) that the frequency spectrum took on a particular idealized form (e.g., that 

of Debye); and (2) that the behavior of every v, component changed with volume in a 

characteristically similar manner. With these assumptions, knowledge of the behavior of the 

lattice's characteristic frequency alone (and not the details of the vibrational spectrum) is 

sufficient to determine the macroscopic value for T, as T = -V (3co/9V)r /to, where (0 is the 

characteristic frequency of the lattice, rather than a constituent component of the spectrum. With 

the use of one further assumption, generally supported by data, that T is independent of 

temperature, T, the definition for the Grüneisen function may be alternately given as 

lA|f = T/V = -(rfG)/tfV)/CD  , (1-1) 

where \|r is introduced in this equation as a definition. Since 0) is constant (dm/dV is zero) for 



the special case of a harmonic lattice, T may also be thought of as a measure of the lattice's 

vibrational anharmonicity. 

More recently, Plendl [3,4] analyzed actual, rather than idealized, frequency spectra. 

Through extensive correlation, he quantitatively determined that the characteristic frequency of 

any given atomic vibrational spectrum could be computed by the center of gravity of that 

spectrum, the so-called centro-frequency, as in 

oc 

Jv/(v) d\ 

(0 = v    = 1    , (1-2) 

J/(v). d\ 
o 

where \crr is the centro-frequency, and /(v) is the experimentally measured frequency spectrum. 

That the characteristic frequency, u>, may be given by vctr is telling. It says that the actual 

spectrum must straddle the characteristic frequency, unlike, for example, the idealized Debye 

spectrum in which the characteristic frequency is the largest frequency component of the 

spectrum. More specifically, the characteristic frequency is a weighted average of the frequency 

spectrum. This concept is of some importance to subsequent discussions on the nature of the 

characteristic lattice stiffness. 

2.  Previous Models of the Grüneisen Function 

A number of models have been introduced for the calculation of T. An early model, of 

Slater [2], examined the restoring force upon an atom displaced from its rest position in the lattice 

and used this to determine a spring constant and thus a frequency. However, because Slater 

quantified the spring constant in terms of pressure-volume compressibility, rather than an 

interatomic force-displacement relation, his formula could not recreate the proper value of T = 0 

for the limiting harmonic case.  Dugdale and MacDonald [5] remedied this deficiency by using 



the properly constructed spring constant.   However, in both of these analyses, only nearest- 

neighbor interactions were considered and only longitudinal waves were modeled. 

Later, Pastine [6] and Vashchenko and Zubarev [7] introduced separate models for T, 

which tried to improve on prior work by accounting for transverse waves, in addition to the 

longitudinal waves considered in earlier works. Both these works relied on the characterization 

of empirically composed, volume-dependent Poisson ratios, the theoretical basis for which was 

no better understood than that for T, unfortunately. In the case of Vashchenko and Zubarev, 

however, the empirical function was chosen in such a manner as to reproduce, for three special 

cases, the models of Slater, Dugdale and MacDonald, and the free volume theory, respectively. 

Common to these and other analyses [2,5,8,9] was the assumption that the volumetric 

stiffness of the lattice, proportional to the second derivative of the energy potential with respect 

to lattice spacing, d2Epot/dk2, is proportional to the vibrational stiffness of the lattice. Such an 

assumption has been pervasive for two reasons: (1) for a harmonic lattice, it is strictly true; and 

(2) when only nearest-neighbor interactions are considered for the case of infinitesimal vibrational 

amplitudes, it is true by virtue of linearization. These two assumptions cover a wide range of 

modeling strategies, as the only alternative would seem to be the modeling of nonlinear effects 

and non-nearest-neighbor interactions, with the resultant set of coupled, nonlinear equations being 

solvable through numerical means only (e.g., time integration or modal analysis). 

Recently, Segletes [10] proposed a semi-empirical equation of state that accurately 

describes the lattice force and vibrational stiffness for many metals to several megabars of 

pressure, in terms of the vibrational frequency of the lattice. In this model, the zero-temperature 

lattice force varies as 

F = (C0/r0)
2 -X2/y • ((ö/co0f ln(co/(o0)   , (2-1) 

where the "0" subscript denotes conditions at the reference, zero-force state, C0 is the bulk 

sound speed at the reference state, and K, taken as a constant K - r)/(3ro), indicates a ratio of 



volumetric to vibrational anharmonicity (where r\ is a nondimensional parameter employed by 

Rose et al. [11]), which correlates the curvature of the lattice potential (i.e., the slope of the 

force) at the reference state to the binding energy of the lattice potential. The variable X. is the 

current lattice spacing, and \JT, as defined in eqn (1-1), is simply the ratio V/T. The lattice force, 

F, is characterized by pc X
2, where pc is the zero-temperature (so-called cold) pressure in the 

lattice. Subsequent analysis of this equation-of-state form [12-14] revealed that the volumetric 

stiffness of the lattice, denoted dFldk, was of a different functional form than the vibrational 

stiffness of the lattice, denoted dFvlb ßx. In particular, for vibrations of infinitesimal amplitude 

(which we assume for the low temperature behavior of solids), the vibrational stiffness, from 

considerations of a linearized vibration analysis, varies as 

-dFvlb/dx~a2  . (2-2) 

But rather than the volumetric stiffness following this same functional form, a more complicated 

expression arises from eqn (2-1), which, even when idealized to a quasi-harmonic form, varies 

instead along the lines of 

-dFldk ~ to [ ln(co/w0) + 1 ]       (quasi-harmonic). (2-3) 

This disparity provoked speculation that: (1) the omission of non-nearest-neighbor interactions 

from the early analyses may have led to a systematic error, and (2) there might be some hope 

of capturing the interactions of nonnearest neighbors within the context of an analytical form 

along the lines of eqn (2-1). 

It is the primary intent of this report to quantitatively analyze the influence of non-nearest- 

neighbor interactions on various stiffnesses of the lattice, in hopes of ascertaining whether or not 

there is any basis for the distinction cited between eqns. (2-2) and (2-3), which might lead to a 

relation like eqn (2-1). To compute the details of the vibrational spectrum, a modal analysis or 

time-integrated dynamic solution would need to be performed on a large array of lattice atoms. 

But since only the characteristic frequency is desired, which is sufficent to obtain a value for T, 

we  seek a shortcut to  the  full dynamic  solution.     Unlike  Slater [2]  and Dugdale  and 



MacDonald [5], the current analysis considers the behavior of both the longitudinal and transverse 

stiffnesses. However, it does so along only the primary axes of the crystal. A contemplated 

future effort will work to address this limitation. Finally, the method to be proposed here uses 

a given interatomic pairwise potential (energy vs. distance) in order to infer the characteristic 

frequency behavior of the lattice. It therefore goes without saying that the validity of any results 

obtained here is bounded by the domain of applicability of the selected potential. We intend to 

show that, in spite of ignoring directional variations in crystalline behavior, a meaningful 

description of the characteristic frequency of the lattice can, nonetheless, be obtained. 

3.  Non-Nearest-Neighbor Interactions 

One may argue, for several reasons, that the vibrational and volumetric stiffnesses of an 

atomic lattice are not functionally equivalent. One compelling argument [13,14] may be made 

by considering a one-dimensional string of atoms. The volumetric stiffness quantifies the 

resultant change of externally applied force required to alter the spacing between every adjacent 

atom in the lattice by an amount dk, whereas the vibrational stiffness quantifies the restoring 

force on a single atom in question when it, as part of a moving wave, is displaced a distance dx 

with respect to a lattice that otherwise remains, on average, at a fixed location. In the former 

case, the resultant change in separation to the n'th nearest neighbor is ndk, while in the latter 

case, it is merely dx. Clearly, these two situations, and thus the two associated stiffnesses, must 

be different if interactions are considered for neighbors n>\. Furthermore, Plendl[3,4] has 

actually reported experimental data on this distinction, by comparing his centro-frequency (a 

measure of vibrational stiffness) to the so-called "definite frequency" (a measure of volumetric 

stiffness) at the equilibrium states for many ionic crystals. He noted that the interrelation of 

these two frequencies could be characterized in terms of the lattice's exponent of repulsion and 

they were observed to vary from each other by as much as ±20%. 

If one considers a single, infinitesimal wave of disturbance along the principal axis of a 

crystal lattice, then the characteristic vibrational stiffness of the lattice may be acquired by 

finding the restoring force on one atom of interest (atom O) by moving a plane of atoms 



containing O a distance dx with respect to an otherwise stationary lattice. If the displacement, 

dx, is perpendicular to the plane of atoms, the vibration is a longitudinal one. If dx is parallel 

with the plane, the vibration is transverse. If knowledge of the characteristic stiffness behavior 

can be obtained in this manner, then vibration theory for infinitesimal vibrations [i.e., eqn (2-2)] 

will immediately yield the characteristic vibrational frequency behavior. 

For the more realistic case of finite vibrational amplitudes and multiwave disturbances, 

the instantaneous interatomic stiffness will vary finitely in time because the instantaneous 

separation of atoms will be a function of the frequency phase-shift of adjacent, vibrating atoms. 

The averaged value of this time-dependent stiffness may, thus, no longer be exactly that of the 

infinitesimal-amplitude single-wave stiffness described in the proceeding text, though we hope 

the infinitesimal stiffness will still serve as a reasonable approximation. In a dynamic solution, 

the instantaneous distance between any two atoms {i.e., phase information), because of vibration, 

will be sometimes larger than and other times smaller than the current equilibrium rest distance. 

The instantaneous, pairwise stiffness will also fluctuate about this equilibrium value (unless the 

interaction is harmonic, in which case the stiffness is independent of separation). During the 

course of the vibration, as the stiffness is locally larger than the current equilibrium stiffness, 

higher frequency modes tend to be excited, and correspondingly, when the instantaneous stiffness 

is lower than equilibrium, lower frequency modes are excited. Since a vibration necessarily 

makes excursions about both sides of the equilibrium point, both higher and lower frequency 

modes will be excited when anharmonicity exists, as compared with a locally harmonic spectrum. 

And yet, the average effect on the centro-frequency of the spectrum may be small by 

comparison, since the simultaneous introduction of higher and lower frequency modes will tend 

to cancel out in the centro-frequency calculation of eqn (1-2). So it goes, too, with the 

vibrational stiffness because of the monotonic relation between frequency and stiffness, eqn (2-2). 

Thus, while anharmonic effects will cause the pairwise stiffness to fluctuate in time about its 

equilibrium value for finitely large vibrational amplitudes, it is the static value of that stiffness 

that might reasonably be used to approximate the time-averaged characteristic stiffness 

corresponding to the centro-frequency. 



In the same way that determination of a spring stiffness, for a simple mass-spring 

arrangement, is sufficient to characterize the resultant vibrational frequency without having to 

reevaluate the equations of dynamic motion, we intend to compute and utilize several spring 

constants derived from a static lattice in order to infer the characteristic vibrational behavior. No 

atomic dynamics calculations involving either the equations of motion or modal analysis will be 

required. Essentially, the equation of motion is already contained in the solution represented by 

eqn (2-2), for a simple spring-mass system under infinitesimal vibrational amplitude. 

One other reason to believe that the static stiffness of a lattice may be used to characterize 

the dynamic solution is that, in a lattice, vibrational amplitude is a measure of temperature. And 

since T is, for actual lattices, generally found to be temperature-insensitive over a large range, 

we may conclude that the stiffness and its derivatives are vibrational-amplitude insensitive to the 

same extent. 

4. Volumetric Distention 

Let e(s) denote the energy potential between any two atoms in a 3-D simple-cubic lattice, 

separated by a distance s. Then /, given by -de/ds (positive in compression), will denote the 

pairwise force. Considering our atom of interest, atom O, to be at the origin, we use the index 

ijk to denote an atom located relative to the origin at coordinate (x,y, z) = (Xi,Xj,Xk), where X 

is the current lattice spacing of the given simple-cubic lattice. Applying the distance formula, 

Sft - (JC
2
 + y2 +Z2), from our atom of interest to the atom ijk is simply 

s^ue+f+ey2 . (4-i> 

If we use Epo,(X) to denote the summed potential energy for the atom at the origin, arising from 

the contributions of every other atom in the lattice, then for a lattice of infinite extent with an 

instantaneous lattice-spacing of X, we have 



EJV = E E E E<V . («) 
1= -oo      J- -oo       /; = -oe 

where we define e(0) = 0, to preclude the situation of atom O producing a contribution to its own 

potential. 

If we first consider the case of volumetric expansion, whereby the spacing between 

adjacent atoms in the lattice is increased from X to X + dX, eqn (4-1) indicates, for a given pair 

of atoms, that sijk is directly proportional to X. Thus, the separation metric between the origin 

and atom ijk, for volumetric expansion, is obtained from eqn (4-1) as 

dsvo,/dX = s,jk/X = (i2+f + k2y<2  . (4-3) 

Eqn (4-3) merely indicates that the amount of increased separation caused by an incremental 

change in X is directly proportional to the distance of ijk from O. The quantity dsvol IdX is a 

function only of the topological indices, i, j, and k, and not of X or s. Thus, for any given atom, 

ijk, this metric is constant under volumetric dilatation. As such, higher derivatives, such as 

d2svol/dX2, are identically zero. 

A spring force, in general, is given by F -dEldx. By attaching to the term "lattice force" 

the physical meaning of pc X
2, where pc is the cold pressure of the lattice, it may be shown, for 

the current case, that F = -{dEpolldX)ß, consistent with the spring notion. We therefore compute 

F (physically representing the external unit force required to volumetrically compress the lattice) 

as 

F(X) = -1/3 £ £  Y, dddK\s.!t ■ (4-4> 
(=■-00      j-=~oo      £=-oo 



Furthermore, the term dddX, for the case of volumetric expansion, is de/ds -dsvoI/dX. The first 

deriviative of the pairwise energy potential is simply the negative of the pairwise force—thus, 

oo oo oo 

F(X) = 1/3 E   E   E  /(V äsjdk\uk   . (4-5) 
I'ä-OO      j-~°°       k=~oa 

We wish to compute the spacial derivative of eqn (4-5) for the case of volumetric deformation, 

since the force-derivative is itself one of the spring stiffnesses being sought. For the case of 

volumetric distention, we again take the derivative with respect to X to obtain 

oo oo oo 

dF/dX = 1/3 E   E   E   df/dsLk (.äsjdk\..k)
2   . (4-6) 

/5T-00 _/=-00 k'~<X> 

With the use of eqn (4-3), eqns (4-5) and (4-6) may be simplified as 

CO oo oo 

F = m E E E /(v> a2+j2 + k2r2 (4-7) -ijk 
i=-0O        j=~QO k~'<X> 

and 

CO OO 

dF/dX = 1/3 E   E   E   dflds\sijt (i2+f + k2)   ■ (4-8) 
i=-oo     j=~oo      k=~°o 

5. Vibrational Distortion (Longitudinal) 

In contrast to the situation of volumetric distention, an instantaneous snapshot of the 

simplest vibrational distortion (i.e., a planar pulse) involves the displacement of a single plane 

of atoms with respect to an otherwise stationary lattice. Again, consider our atom of interest, O, 



to be initially located at the origin, at the moment a longitudinal plane wave traveling from the 

+x direction to the -x direction just passes the origin. At this instant, all atoms in the x = 0 plane 

are displaced a distance dx in the negative x direction, whereas every other atom in the lattice 

is located at its nominal, undisturbed position. For all atoms in the displaced plane, no change 

in position occurs with respect to each other, since all atoms in that plane are moving in unison. 

However, we may compute the vibrational separation metric between atom O and atom ijk not 

located in the x - 0 plane. In terms of the motion of atom O in the x direction, we can quantify 

the vibrational separation metric by taking the derivative of the atomic separation to atom ijk, 

sifk =(*2 + y2+z2)> with respect to x only.  We obtain 

dsvib /dx = xlsijk = cos Y      (/ * 0 for longitudinal vibrations), (5-1) 

where cos 7 is the direction cosine between the line of action, from O to ijk, and the vibrational 

movement along the x axis. For this particular vibrational mode, it is given by 

cos Y = i/(i2 +f + k2)1'2. The i * 0 restriction in eqn (5-1) accounts for the fact that all other atoms 

in the x = 0 plane are moving in unison with atom O, and their vibrational separation metric thus 

remains zero. Unlike dsvol Idk, the vibrational separation metric is not independent of changes 

in x.  Therefore, higher derivatives will need to be computed as well; for example, 

d\lb Idx2 = \lsijk - J/s' = (sin2 y)/sljk      (i * 0), (5-2) 

and so on. As a point of note, for the vibrational mode being considered, 

sinY= [(/+4W+/ + *2)]"2. 

The longitudinal vibrational force in the lattice, call it FL (physically representing the 

resultant force on the oscillating atom, O), and its derivative may be obtained in a like manner 

to the volumetric force quantities, though they will differ from the earlier results in that the 

derivative of e is taken with respect to the vibrational displacement, x, and not the lattice spacing, 

X. The vibrational force and its derivative are thus 

10 



W = E E E f(^dsJdx\iß    ^°> • ^ 
;=-oo      _p 

and 

oo oo oo 

wfi* = E E E [4W. 0^*U2 - /(^> a\,/a*2 ]    o>o) . (5-4) 
(Ä-00       ]-- k=-°o 

Because the sum is performed at the moment when the vibrating atom is instantaneously at its 

equilibrium position (the origin), the resultant force, Fvib, on the atom should be momentarily 

zero. We see from eqn(5-l) that dsvibldx in the -x half-space is opposite in value to the 

corresponding point in the +x half space. Thus, the sum of eqn (5-3), when taken over the full 

3-D space, will indeed be zero. Were the sum to be performed over the +x half-space only, the 

resulting nonzero value for force would represent the local force being exerted on the +x side of 

the atom. However, though the net force on an unextended spring is zero, the stiffness of that 

same spring is not zero. Eqn (5-4) reveals this point to be the case, as the squared term will 

always yield a positive contribution to the summation. It is with the use of eqns (5-1) and (5-2) 

that eqns (5-3) and (5-4) may be simplified as 

pL = E E E /(V cos? s °    v*0) ' (5~5) 
i=-oo     j=-<x      k=~oo 

and 

8FL/8x=£   £   Y,   [ dfids\s • cos2y+f(sijk)/suk-sin2y]      (i*0).       (5-6) 
i=-oo    7= £=-oo 

11 



Eqn (5-6) confirms what we know to be true, were the lattice to be composed of harmonic (i.e., 

linear) springs. That is, when the force-displacement relationship for the constituent springs of 

a lattice is linear, such that dflds=ßs, the characteristic vibrational stiffness of the lattice is 

proportional to the stiffness of the component spring. Furthermore, that constant of 

proportionality is the number of springs acting on the atom. 

6.  Vibrational Distortion (Transverse) 

Like the longitudinal vibration, an instantaneous snapshot of a transverse vibrational 

distortion also involves the displacement of a single plane of atoms with respect to an otherwise 

stationary lattice. Again, we consider our atom of interest, O, to be initially located at the origin, 

at the moment a transverse plane wave traveling from the +y direction to the -y direction just 

passes the origin. At this instant, all atoms in the y = 0 plane are displaced a distance dx in the 

negative x direction, whereas every other atom in the lattice is located at its nominal, undisturbed 

position. For all atoms in the displaced plane, no change in position occurs with respect to each 

other, since all atoms in that plane are moving in unison. However, we may compute the 

vibrational separation metric between atom O and atom ijk not located in the y = 0 plane. The 

resulting separation metric between O and atom ijk, when our atom of interest is momentarily 

displaced to coordinate (-dx,0,0), is likewise obtained, in the manner of eqn (5-1), as 

dsvib /dx = xlsijk = cos y      O'* 0 for transverse vibrations)  . (6-1) 

The transverse-vibrational force in the lattice, call it FT (physically representing the 

resultant force on the oscillating atom, O), and its derivative may be obtained in a like manner 

to the longitudinal-vibrational force quantities. The transverse-vibrational force and its derivative 

are thus 

F#) = EIE  MjJ *J*x ,Jk     U*0)  , (6-2) 
i'=-oo      js -oo       k--<*> 

12 



and 

OO DO OO 

dFT/dx = Y,   E   E   [ dfds |,   (dsjdx \..kf + /(^) a\,/ax2 ]      (j * 0)  . (6-3) 
i    -oo      j=-oo       A'=-oo 

Like the longitudinal case, the resultant force, FT, on the atom will be momentarily zero, though 

the stiffness of that same spring is not zero. We see that the only difference between these and 

the longitudinal equations is the nature of the summation restriction as to which atoms are 

moving in unison with atom O. The final results are thus 

OO OO OO 

Fr = E    E    E   /(V cos7   ^0      (j*0)   , (6-4) 
i=-<x>    j=-<x    k--°° 

and 

oo oo oo 

dFTldx = Y,   E   E   [^^!5|;cos2
T+/(5^)/5^sin27]      O>0).       (6-5) 

/=-oo       J- 

One last note regarding transverse vibrations is that transverse waves traveling in the v and z 

directions will both produce displacements in the x direction, whereas only a longitudinal 

vibration in the x direction will do so. Thus, there are two possible transverse vibrational 

components for every longitudinal component. Because of considerations of symmetry, however, 

both transverse wave components will exhibit characteristic behavior identical to that expressed 

by eqn (6-5). 

7.  Vibrational Stiffness (Aggregated) and Its Derivatives 

The vibrational spectrum of an actual material is composed of many different modes. It 

is plain to see that equations developed to this point, for longitudinal and transverse vibrations, 
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consider only the modes along the principal axes of the lattice. In this current work, we limit 

the analysis to this restriction, and for two reasons: (1) primarily, for the sake of simplicity; and 

(2) because past works by Slater [2] and Grüneisen suggest that different vibrational modes vary 

in a characteristically similar manner under changes in lattice spacing. Though not reported here, 

we have formulated modified relations to examine other vibrational modes of the lattice. 

Preliminary results do indicate, to a large extent, a characteristically similar behavior in terms 

of variation of the modal frequency with lattice spacing. Ideally, we hope in a future effort to 

integrate analytically all of the vibrational modes into a characteristic stiffness. 

Even with the simplification of restricting the study to the principal vibrational modes of 

the lattice, we still have, at this point, a need to aggregate the one longitudinal and two 

corresponding transverse vibrational stiffnesses into a net vibrational stiffness quantity. It may 

be shown from the work of Slater [2] or Brillouin [8] (which presents the result directly) that the 

frequency components are related to an aggregated frequency by way of 

3/033 — 1/cof + 2/(4   • (7-1) 

These frequencies vary with their associated stiffnesses by way of eqn (2-2). Therefore, an 

aggregated stiffness may be obtained as 

-dFJdx = {3 / [l/(-dFL/dxf2 - 2/(-dFT/dxf2] }m   . (7-2) 

Note that even though the longitudinal and transverse components of the vibrational stiffness may 

change sign (becoming positive) at large extensions of the lattice, eqn (7-2) loses its traditional 

meaning when either of the component stiffnesses becomes positive, and the calculation may, 

thus, be abandoned for lattice extensions beyond this point. 

Subsequent analysis, in pursuit of the Grüneisen function, will also require the derivative 

of this aggregated stiffness with respect to lattice spacing, X. Tedious, but straightforward, 

differentiation gives 
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—{dF fix) = 1/3 
dk      Vlb 

BF fix 
via 

dF./dx 
V     L      J 

\5/2 

dk 
QFJdx) + 2/3 

fdF .fix^ 
vib 

5/2 

dFfix 
V J 

dk 
(dFfix)  . (7-3) 

The individual L and T component and aggregated stiffness values may be obtained via 

eqns (5-6), (6-5), and (7-2), respectively. In addition, derivatives of the component stiffnesses 

with respect to A. are obtained by taking the derivatives of eqns (5-4) and (6-3) with respect to 

k (not x). 

Though the angle, 7, between the pairwise force's line of action and the direction of 

vibration does not vary under volumetric change, the distance sijk does change according to the 

separation metric dsml/dk, eqn(4-3). Thus, to accomplish the derivatives of the stiffness 

components required of eqn (7-3), we make use of the following derivatives of eqns (5-1) and 

(5-2): 

d/dk(dsvib/dx) = 0  , (7-4) 

and, referring to eqn (4-3), 

d/dkQ^/dx2) = -(sin2y)/si -ds^/dk (7-5) 

With the use of these, the derivatives of eqns (5-4) and (6-3) become 

d 
~dk 

(      \ 
BF, 

Kdx J 

00 00 

dyds21    cos2y + 
dVds L   /(O 

jijk >ijk 

sin2y 

and 

(1 * 0)      (7-6) 
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~dk 

f      \ 
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dx 

°°        °°        °°     //c 

I - -QO        I- -oo       !(•= -oo t*A. 

d2ßds2 s   cos2y - ^L      /(*,*) 1 
V 

,;*' 

V 
snry 

0*0)   .       (7-7) 

It may again be confirmed from these two results that, were the lattice composed of linear 

(harmonic) springs wherein dflds =fls and d 2flds2 = 0, the variation of lattice stiffness with A. 

would be identically zero. These two equations may be inserted into eqn (7-3) to obtain the 

derivative, with respect to X, of the aggregated stiffness. Subsequent use may be made of 

eqns (7-2) and (7-3) to help ascertain the vibrational behavior of the lattice. The availability of 

aggregated quantities, however, does not preclude analysis in terms of the individual longitudinal 

and transverse (L and T) components of stiffness, which may be used directly, in lieu of 

eqns (7-2) and (7-3), respectively. 

8.  Results and Observations 

A study is made of the volumetric and vibrational lattice stiffnesses using the preceeding 

equations. The lattice structures chosen for study is the simple-cubic (SC), body-centered cubic 

(BCC), and face-centered cubic (FCC) structures. The sole influence of the BCC and FCC 

structures on the equations derived above is that /, j, and it necessarily take on the appropriate 

integer-plus-one-half values in addition to integer values. The method described here could 

reasonably be extended to other lattice structures as well. 

To proceed with the analysis, a pairwise potential, e(s), must be specified with energy 

expressible as a function of separation distance, s, so as to determine the influence of any 

arbitrary atom (located at lattice location ijk) upon our atom of interest, O, conveniently located 

at the origin. To this end, we select the so-called H02 model of Schulte and Holzapfel [15], 

primarily because they noted that their model, in contrast to others, exhibited the proper limiting 

behavior in strong compression. Though this model was not originally proposed as a pairwise 

potential, we choose it nonetheless for study. And though we have no assurance that it will do- 
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so, the use of this model as the pairwise potential will allow it to be determined, not only if the 

functional form of the aggregated crystal lattice potential follows that of the pairwise interaction, 

but whether the decay rates and dimensions of the many-atomed crystal lattice are similar to 

those of the corresponding pairwise interaction. 

Though £(» is taken in this study to be the H02 model, any suitable potential may be 

used over its domain of compressive accuracy. The far-field behavior of the potential under large 

expansions is significant as well since the summations of the lattice quantities are, in theory, 

taken out to infinite separation. This concern is especially relevant for low decay rates, 

whereupon the potential decays slowly with increased separation. The concern is not one of 

absolute convergence, since the number of atoms in the summation at a given separation distance 

goes only as the square of the separation distance, whereas the potential decays exponentially. 

Rather, the concern is one of what the actual converged value is; a cursory examination has 

shown some sensitivity of results to the manner in which the potential decays with separation 

(i.e., sensitivity to the choice of pairwise potential). However, this sensitivity has been one of 

value, not of trend. 

The H02 potential, being used to describe the pairwise interaction of any two atoms in 

the lattice, actually characterizes the force interaction instead of the energy potential. Because 

the H02 potential is being used to characterize the pairwise interaction, rather than the full lattice 

interaction, we must express the potential in terms of force and distance, rather than pressure and 

volume (as it was originally given) since, for a pairwise interaction, pressure and volume have 

no meaning.  Since F=pcX
2, the H02 expression, expressed in terms of pairwise force, is 

/ = s0(df/ds)0 x-3 (1 -x) exp[a (1 -*)]   , (8-1) 

where a is the interaction decay constant of the pairwise system and x is a nondimensional 

interatomic spacing parameter, given by x = s/s0. The parameter s0 (dflds)0 quantifies the force 

gradient at the equilibrium (zero-force), pairwise spacing, s0. The pairwise energy, e(s), and the 

17 



force derivative, dflds, may be directly obtained through integration1 and differentiation of 

eqn(8-l), respectively. 

This study is performed for a variety of representative values of a, with results being 

obtained as a function of lattice spacing (i.e., the governing equations are summed for various, 

closely spaced increments of XJs0). Since summations to infinity cannot actually be performed, 

a suitably large radius of influence, smax, is chosen for the summation in order to obtain 

convergence (i.e., terms were summed if sijk < s,^). For typical values of A. and a, values of smax 

equal to 8 to 11 times s0 were observed to be sufficient, with the larger smax values corresponding 

to smaller values of a. Of course, for A. values that might be a small fraction of s0, the number 

of summed terms grows rapidly, increasing as [(s^/s^So/Ti)]2. Furthermore, as the pairwise 

decay rate is successively diminished, such that the effects of far-field influence decay ever more 

slowly with distance, an increasing number of summation terms are required to achieve 

convergence at a single highly compressed lattice spacing. 

f The integration of the H02 force function, eqn (8-1), by standard methods requires an infinite summation, with successive terms going as 

x"l(n-n\). For large x, corresponding to large lattice spacings, the number of terms required for convergence and the limits of computer precision 

make this approach impractical. Therefore, a fit was developed for the offending exponential integral. By making use of the substitution, w - 

\l(ax), the problem may be expressed in terms of 

l tai) 
[e"'dx f    .,.. 

dw 

The fit to this transformed integral has been found to be accurate to within 0.008% over the complete domain w > 0 (0 < x < <*>). The fit is given 

by 

«"""div •> e~''~ if,           r       i /i      M   (1 * 3.918iv -2.5761V2) tv - In J1 * w - [w - ln(l *w)] •_ 1 
1 (1 * 5.573K--5.888H:) 

The constants in this fit are tailored to minimize the relative error in the so-called second exponential integral, £,(*). A general treatment of this 

approach for fitting the exponential integrals, £„, without the use of fit splicing, may be found in Segletes [27]. 
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A number of general observations that seemed to apply regardless of the value of a were 

made from the results of the study and are given as follows: 

(1) The equilibrium condition for the lattice exhibits a nearest-neighbor separation distance 

less than that for the pairwise interaction. In particular, the equilibrium spacing of the nearest- 

neighbor atoms within a lattice, s , must always be smaller than the pairwise equilibrium 

spacing, s0, since for a lattice at equilibrium, the attraction of the far-field atoms must be exactly 

balanced by the repulsion of the nearest neighbors. These nearest neighbors, on the other hand, 

can only be exhibiting repulsion if their separation distance is smaller than the equilibrium, 

pairwise spacing. Table 1 gives the equilibrium lattice separation as a function of pairwise decay 

rate for the various lattice structures (SC, BCC, and FCC) when using the H02 potential as the 

pairwise potential. The geometry of lattice structures other than simple cubic dictates that the 

interatomic spacing to the nearest neighbor, seq, is less than the unit cell dimension, XQ. Thus, 

while the unit cell dimension may exceed the pairwise-equilibrium spacing, s0, in the case of 

BCC and FCC structures, the nearest-neighbor separation distance, seq, will not do so, and for the 

aforementioned reasons. 

Table 1.    Relative Values of Equilibrium Lattice Spacing as a Function of Pairwise 
Interaction Decay Rate 

a 
V^o iseqls0) 

SC BCC FCC 

1.1 0.13 (0.13) 0.16 (0.14) 0.20 (0.14) 

1.5 0.45 (0.45) 0.55 (0.48) 0.69 (0.49) 

2 0.65 (0.65) 0.79 (0.69) 1.00 (0.71) 

2.5 0.76 (0.76) 0.92 (0.79) 1.15 (0.82) 

3 0.83 (0.83) 0.99 (0.86) 1.24 (0.88) 

4 0.90 (0.90) 1.06 (0.92) 1.33 (0.94) 

5 0.94 (0.94) 1.09 (0.95) 1.37 (0.97) 

oo 1.00 (1.00) 2/31/2 = 1.15 (1.00) 21/2 = 1.41 (1.00) 
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Also, the lower the decay rate, the higher the equilibrium compaction (i.e., small a 

implies small X^/SQ). The reason for this behavior is that a smaller exponential decay rate in the 

potential implies a larger number of far-field neighbors exerting a significant attractive force. 

This increased attractive force from the far field must be balanced by a larger repulsion from the 

nearest neighbors. This far-field attraction, therefore, causes the equilibrium lattice spacing, X^, 

to compress significantly with respect to the pairwise equilibrium distance, s0. For these low- 

decay-rate cases, the form of the pairwise potential is exercised at both the repulsive and 

compressive limits of accuracy. The low values of X^ /s0 drive the nearest neighbor into an 

extremely compressed state, while at the same time, the low decay rate allows for significant 

pairwise interactions from atoms located a far distance away. The number of atoms playing a 

significant role in the equilibrium calculation will continue to increase as the interaction decay 

constant is decreased, with the computational burden increasing correspondingly. But such 

behavior is only a limiting case, and, in general, a complete and converged analysis for a given 

value of a, over an extensive range of X, requires mere seconds of computation on today's 

generation of scientific workstations (e.g., SGI Octane). 

(2) The summed lattice force, F, like the given pairwise force,/, may be nominally described 

over a moderate range of lattice spacings by the H02 lattice potential of Schulte and 

Holzapfel [15], with a for the lattice taken identically to the pairwise interaction. There was 

no reason to have assumed, a priori, that the summed potential would take on a similar 

functional form to the pairwise potential composing it. Table 1, for example, has already 

indicated that the absolute minimum of the summed potential occurs at a different lattice spacing 

than the pairwise potential. Nonetheless, it was observed that, up to moderate compressions (e.g., 

for energies near and below the binding energy), the lattice force follows a similar functional 

form to the pairwise force, including behavior according to an identical decay constant (i.e., the 

value for a characterizing the lattice appears to be identical to that characterizing the pairwise 

interaction). At very high compressions (and particularly for larger values of a), the scaled 

pairwise- and lattice-force may begin to diverge slightly. Figure la shows, in nondimensional 

terms, the pairwise- and lattice-force for an FCC lattice with a = 2.5. 
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Figure 1. The pairwise and lattice behavior of an FCC lattice with a pairwise interaction 
decay rate of a = 2.5: (a) nondimensional force; (b) energy potential, depicting 
differing values for pairwise- and lattice-stiffness, r\. 
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(3) The effective nondimensional stiffness of the lattice, r\, is different from, and less than, 

the stiffness associated with the pairwise interaction, r^ Though the lattice behavior is 

nominally describable by the same H02 function as the pairwise behavior, the one notable 

difference observed at equilibrium between the pairwise and lattice interaction is that the value 

of the lattice stiffness, l4dFldk\ differs from the pairwise stiffness, s0(dflds)0. One good 

nondimensional way to express this difference is by way of the T| parameter employed by Rose et 

al. [11].  For the pairwise interaction, it is given by 

^^-(dfldsXsl/E,  , (8-2) 

where zb is the binding energy of the pairwise interaction. For the full lattice, the 

nondimensional stiffness is given by 

Ti2 = -3 {dFldX)^ IEb  . (8-3) 

In eqn (8-3), Eb is the binding energy of the lattice. The factor of 3 reflects the definition of 

lattice force, as introduced in eqn (4-4). Both the pairwise and lattice binding energies are 

obtainable, from the integration of eqn (8-1) in the case of the pairwise interaction, and from the 

triple summation of eqn (4-2) for the lattice. In both cases, the minimum in the energy potential 

is the binding energy. Table 2 shows the comparison of nondimensional stiffnesses (pairwise and 

lattice) arising from a given interaction decay rate in the H02 potential. As a is lowered, the fact 

that the nondimensional stiffness of the lattice decreases relative to the pairwise stiffness is 

indicative of the fact that, for low values of a, the far-field atoms account for an ever-increasing 

percentage of the lattice's binding energy. 

As one of their primary contributions, Rose et al. [11] did note the functional similarity 

between the energy potentials of a great variety of bonding configurations, including metallic as 

well as diatomic. And though the pairwise bond in a crystal lattice configuration is not identical 

to the corresponding homopolar bond (because of differing electronic structures), it is not wholly 

unexpected to find that the (summed) lattice potential does, indeed, follow a form similar to the 

pairwise potential.  Figure lb depicts the lattice potential for an FCC structure, derived via the 
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triple summation of eqn (4-2), using a pairwise decay rate of a = 2.5, corresponding to 

r\pair = 4.82 (see Table 2). Closely tracking that curve, shown on the same figure, is the 

(unsummed) potential of Rose et al. [11], employing a value of r\ equal to 4.55. 

Table 2. Nondimensional Stiffnesses3 as a Function of Interaction Decay Constant 

a \pair 

n OI/TW) 

sc BCC FCC 

1.1 3.21 2.65 (0.83) 2.65 (0.82) 2.65 (0.82) 

1.5 3.70 3.26 (0.88) 3.25 (0.88) 3.25 (0.88) 

2 4.26 3.94 (0.92) 3.92 (0.92) 3.92 (0.92) 

2.5 4.82 4.56 (0.95) 4.55 (0.94) 4.55 (0.94) 

3 5.42 5.15 (0.95) 5.14 (0.95) 5.14 (0.95) 

4 6.46 6.27 (0.97) 6.28 (0.97) 6.28 (0.97) 

5 7.45 7.34 (0.98) 7.37 (0.99) 7.37 (0.99) 

The pairwise and lattice nondimensional stiffnesses were acquired using eqns (8-2) and (8-3), respectively. 

One point of note regarding eqn (8-3) is that the parameter r\ is defined in terms of the 

slope of the lattice force at the XQ lattice-equilibrium reference state. This parameter is a 

nondimensional measure, therefore, of the lattice stiffness. Nonetheless, Rose et al. [11] referred 

to the parameter T) as a measure of the lattice anharmonicity. Though they are technically 

correct, as shall be shown, we prefer here instead to refer to T| as a nondimensional stiffness 

because of its definition in eqn (8-3). 

By contrast, the term anharmonicity characterizes, by definition, the curvature (and not 

the slope) of the lattice force function because of the fact that the force-curvature for a harmonic 

spring is identically zero. If we understand the Grüneisen function, T, defined in eqn (1-1), to 

be a measure of the vibrational anharmonicity of the lattice, then we can characterize the 

volumetric anharmonicity, call it Tml, in terms of a definition similar to eqn (1-1).  Relating to 
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back to the vibrational stiffness by way of eqn (2-2) and expressing the volume-derivative in 

terms of A instead, eqn (1-1) may be expressed as 

Xi/y = r = -(A/6) [d/dX@Fvlh /dx)) I (dFvlh Idx)   . (8-4) 

A corresponding definition for volumetric anharmonicity, employing the volumetric rather than 

the vibrational stiffness, would follow as 

r,o/ = -(A/6) (d2F/dX2) I (dF/dX)  . (8-5) 

Were one to convert A back into V, and substitute F = pcX
2=pcV

li, eqn (8-5) could be shown to 

be precisely the relationship derived by Dugdale and MacDonald [5] for T, who had assumed 

(along with many others) that the volumetric and vibrational stiffnesses were functionally 

identical. Table 3 provides a comparison of these two metrics under various conditions. Note, 

however, that T in the present study is composed only of the longitudinal and transverse 

stiffnesses along the principal directions of the lattice, whereas a full accounting of T would 

include the effects from all lattice modes. We know from the work of Dugdale and 

MacDonald [5], for example, that measured values for vibrational- and volumetric-ro, for real 

materials, are generally closer to each other than is reflected in Table 3. However, though the 

value for T0 may be incorrect as a result of accounting for the vibrational modes only along the 

principal direction of the lattice, it may still be reasonable to assume that the manner in which 

these modes functionally change with lattice spacing is characteristic of how the other modes 

change. 

If an energy potential, one that precisely satisfied Rose's energy potential, were evaluated 

in eqn (8-5) at the reference A,, state, the derived value of TvoK) would be r|/2.6 (or 2.3r)/6, to be 

precise). We therefore see why Rose et al. referred to r\ as an anharmonicity parameter, even 

though its actual definition, eqn (8-3), characterizes a nondimensional stiffness: because of the 

particular form of their energy potential, the parameter T| (or more accurately T]/2.6) characterizes 

the volumetric anharmonicity, as well. 
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Table 3. Equilibrium Values for the Vibrational3 and Volumetric T 

a 
M) (rvo/o) 

scb 
BCC FCC 

1.1 0.72 (1.37) 0.70 (1.37) 0.70 (1.36) 

1.5 0.89 (1.49) 0.83 (1.48) 0.83 (1.48) 

2 1.10 (1.65) 1.01 (1.64) 1.00 (1.64) 

2.5 1.31 (1.82) 1.19(1.81) 1.17(1.81) 

3 1.52 (1.98) 1.38 (1.97) 1.36 (1.97) 

4 1.92 (2.32) 1.74 (2.31) 1.72 (2.31) 

5 2.32 (2.65) 2.09 (2.65) 2.09 (2.65) 

Vibrational T computed from principal stiffnesses only. 
Vibrational T for simple cubic lattice computed from longitudinal stiffness only, as SC lattice not stable in shear, along 
the principal lattice directions. 

Even though the triple-summed energy potential in the current effort, eqn(4—2), is 

nominally describable by Rose's potential (Figure lb), it would be presumptious to conclude that 

rvo/0 will always equal T|/2.6. Therefore, we should use rvo,0 rather than T| to characterize the 

volumetric anharmonicity. For the case of pairwise interactions only, where the H02 potential 

has been assumed as the governing form, the relation rvo;o = 1 + a/3 governs the pairwise 

curvature at the equilibrium state. 

The volumetric anharmonicity, TvoK), since it defines the curvature of the lattice force at 

the XQ state, should also be relatable to the parameter B', which is employed by a number of 

authors [15-19], and represents the pressure derivative of the bulk modulus, B, as 

B'={dBldp)T , (8-6) 

though some authors have defined this derivative as being at constant pressure, not temperature. 

The confusion arises because eqn(8-6) defines a curvature along the reference isotherm. 
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However, actual data tend to be obtained from a number of data points at constant pressure. The 

expression B'0 refers to this quantity at the reference state of zero temperature and pressure. If 

we expand the definition of B as -V (dp/dV)T, then eqn (8-6) may be expressed as 

B=-\ - V(B2p/BV2)T/(dp/dV)T . (8-7) 

Eqn (8-7) looks very similar to the definition of T proposed by Slater [2], T5/, and may be related 

to it as 

r5/ = -l/6 + 572  . (8-8) 

A relation similar to this was actually posited by Syassen and Holzapfel [18], though their 

relation was based on model calculations, and not derived. At the reference state only, the value 

for T0 predicted by Slater's model is 1/3 in excess of the value later predicted by Dugdale and 

MacDonald's model [5], TDm =TSK)- 1/3. And since eqn(8-5) indicated that the Dugdale- 

MacDonald TDM was, in fact, Tvol, we therefore have that 

Tvo,0 = -V2 + B'0/2  . (8-9) 

This equation constitutes yet one more method for estimating TvM, though there appears to be 

wide scatter in the experimental measurement of B'0, more so than in the estimation of T). 

(4) The vibrational and volumetric spring constants are quantitatively distinct functions. 

Perhaps a primary result of this analysis is quantitatively verifying the distinct nature of the 

volumetric and vibrational stiffness of an atomic lattice, a distinction which has been recently 

asserted on qualitative grounds [13] but one which contradicts the assumption employed by many 

previous analyses on the subject [2,5,6-9]. Since the distinction is shown to arise from the 

influence of nonnearest neighbors, we might expect the magnitude of the discrepancy to be 

greater for low-decay-rate interactions. Figures 2 and 3 bear this hypothesis out by depicting a 

comparison of the volumetric and vibrational stiffnesses for two FCC lattices of differing 

stiffnesses. In terms of absolute, not relative, quantities, Figure 4 displays the energy, force, and 

stiffnesses of an FCC, a = 5 lattice. 
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Figure 2. A relative comparison of the volumetric stiffness, dFIdk, to the vibrational 
stiffness, dFvibßx, for an FCC lattice with a pairwise, interaction decay rate of 
a = 1.5: (a) to 2.5 times the nominal stiffness; (b) to 10 times the nominal 
stiffness. 
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Figure 3. A relative comparison of the volumetric stiffness, dF/dk, to the vibrational 
stiffness, dFvibßx, for an FCC lattice with a pairwise, interaction decay rate of 
a = 4. 
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Figure 4. The energy, force, and volumetric and vibrational stiffnesses for an FCC a = 2.5 
lattice, shown in comparison to each other (note that the stiffness functions are 
shown as positive in compression for convenience in visualization). 
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(5) The zero of the vibrational spring constant is observed to be at a value of A, greater than 

the zero of the volumetric spring constant. As a decreases, the distance between these 

zeroes increases as well. For low values of pairwise stiffness, the zero of the vibrational 

stiffness can be significantly different from that of the volumetric stiffness. For the a = 1.5 case 

depicted in Figure 2, the zeroes of the volumetric and vibrational stiffness occur at X/XQ values 

of 1.28 and 2.41, respectively. This difference in lattice spacing corresponds to a huge difference 

in relative volumes, V/V0, of 2.1 and 14.0, respectively. At a large enough expansion, however, 

even the vibrational stiffness is observed to become negative. When the vibrational stiffness 

becomes negative, the characteristic frequency, co, becomes undefined and the Grüneisen 

relationship, eqn(l-l), breaks down. The zero of the volumetric spring constant (i.e., the 

inflection point of the energy potential) has been associated with a metal's melting point [9], and 

perhaps it is this phase change to a liquid, not considered in this study, that in reality precludes 

the Grüneisen singularity associated with the zero of the vibrational spring constant. 

(6) The value of the Grüneisen function, T, is observed to approach 2/3 in the high- 

compression limit. By contrast, r„o/ does not. Eqn (8-4) shows how the Grüneisen function 

(and y = V/T) may be evaluated when the vibrational stiffness is known. The stiffness itself is 

obtained from eqn (7-2) and its derivative with respect to X from eqn (7-3). Alternately, 

longitudinal- and transverse-component values of T may be obtained by using the L and/or T 

component values directly in eqn (8-4). The value for \|r at any given value of X is V7r, 

alternately X3/T. A typical example of the T function, as computed in this manner, is shown in 

Figure 5 (expressed in X, not V), along with \|r. For illustration, both the L and T component 

contributions are shown as well. 

The functional form for \|r has been observed to be similar in appearance (to that of 

Figure 5) over the full range of cases tested. Therefore, we seek to further examine the nature 

of this function. The H02 potential, as noted by the authors [15], exhibits the proper functional 

form in the high-compression limit. We would, therefore, hope that the evaluation of \|T and T 

by way of eqn (8-4) would do the same. In fact, we note here that, regardless of the value 

employed for a, or the lattice structure employed, the limiting high-compression value for T 

approaches the recognizable value of 2/3. By contrast, were there no distinction made between 
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Figure 5. The T and corresponding \jr functions for an a = 2.5, BCC lattice, showing both 
the L and T components, as well as the aggregated function. 
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the vibrational and volumetric stiffness, then rvo/, evaluated by way of eqn (8-5), should instead 

provide the proper limiting behavior of 2/3. However, rvo/ has been observed not to approach 

this limiting value. The only way that rvo/ could approach the proper limiting value, given the 

H02 pairwise potential, would be if interactions beyond the nearest neighbors were ignored. 

Unfortunately, no matter how large an interaction decay constant, a, might be chosen in an 

attempt to eliminate the influence of all but the nearest of neighbors, the nearest nonneighbors 

will nonetheless have an effect in the high-compression limit, since no matter how much a is 

increased, X may shrink toward zero a corresponding amount in order to achieve the same 

relative influence of its nonnearest neighbors. 

Considering the other end of the domain, at large X, a negative slope on Vf has been 

associated with one type of thermodynamic instability at elevated temperatures [20]. We, 

therefore, examine the state of the lattice interactions at this critical point where dy/dV=0. If 

we denote, at this maximum in the \|/ curve, the lattice spacing as Xsmb and the distance to an 

atom's nearest neighbor in the lattice as ssmb, then we may learn something by the behavior of 

these variables as a function of pairwise stiffness and lattice structure. Table 4 portrays these 

variables in a normalized form. The results show behavior that is somewhat uniform across 

lattice structures (allowing for the fact that the SC lattice calculations are based on longitudinal 

stiffness only). Examining sstab, the values relative to s0 are, in addition, nearly independent of 

the interaction decay rate, a. One may conclude from this, regardless of lattice structure and 

stiffness, that the extremum in the i|f curve occurs when the interatomic distance to the nearest 

neighbor in the lattice is approximately equal to the equilibrium spacing associated with the 

pairwise potential. At such a lattice spacing, this nearest neighbor is barely applying any force 

at all, and all neighbors beyond s0 are applying an attractive force. Thus, the maximum of the 

y function occurs, for a variety of lattice structures and over a large range of nondimensional 

stiffness, at nearly the identical relative pairwise configuration—a configuration associated with 

a minimal pairwise interaction from the nearest neighbor. 

Considering, however, the situation in terms of the lattice behavior, as opposed to the 

pairwise interactions, an examination of XSJab values from Table 4 reveals where the equilibrium 

spacing for the lattice falls relative to the critical spacing. At low decay-rate values, the critical 

31 



value for X falls at several times the equilibrium spacing for the lattice. As the decay rate is 

increased, however, Table 4 reveals that the equilibrium lattice spacing approaches the critical 

value for X. 

Table 4.  Critical Lattice Spacings Associated with dyldV = 0a 

a 
Ktab^K    (Sstab^So) 

scb 
BCC FCC 

1.1 7.09 (0.90) 7.34(1.00) 7.39 (1.03) 

1.5 2.04 (0.92) 2.10(1.00) 2.12 (1.04) 

2 1.42 (0.93) 1.46(1.00) 1.48 (1.04) 

2.5 1.22(0.93) 1.26(1.00) 1.27 (1.04) 

3 1.13 (0.93) 1.16(1.00) 1.17(1.03) 

4 1.04(0.93) 1.07(0.98) 1.07 (1.01) 

5 1.00 (0.93) 1.02 (0.97) 1.02 (1.00) 

The iy function computed from principal stiffnesses only. 
The \|/ function for simple cubic lattice computed from longitudinal stiffness only, as SC lattice is not stable in shear, 
along the principal lattice directions. 
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PART II—Macroscopic Lattice Behavior 

9. Mechanical Characteristics of the Lattice 

The summed lattice equations that have been derived in Part I [eqns (4-2), (4-7), (4-8), 

(7-2) and (7-3)] depict a methodology for modeling the interatomic forces and vibrational 

characteristics of an atomic lattice. As a paradigm, it is simple, complete, and of general 

applicability. Unfortunately, from a practical point of view, a triple summation is an inefficent 

vehicle by which to computationally describe the behavior of a lattice. Furthermore, the insights 

provided by the triple summation are limited in scope. 

It was, therefore, a goal in this study to capture the essence of the governing equations, 

which involve triple summations, in terms of a simpler analytical formulation. Our approach is 

to examine separately the mechanical and the thermal characteristics of the summed lattice 

equations, each in terms of the lattice's vibrational behavior. These separate mechanical and 

thermal models can then be combined into a unified equation of state. 

Based in part on the semi-empirical form of eqn (2-1), similar looking forms were tested 

in an attempt to analytically describe the summed lattice force without the use of fitting 

parameters. A remarkably good fit was found possible, over a wide range of stiffnesses and 

lattice spacings, with the following form: 

_  (ü)/Cö0)P ln(co/fa)0)   . (9-1) 
-\{dFldk\      3T0QJ\)- 

This form is guaranteed to provide slope compatibility of the force at XQ, while the parameter ß 

is selected to guarantee curvature compatibility in the lattice force at XQ. That requirement 

dictates that 
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ß = [rvoro - 1/3 - 1/2 • r0 (dy/dV)0) I r0  , (9-2) 

Furthermore, we note that ß is obtainable from material properties at the force-free equilibrium 

state. 

Let us recall that given in this problem is a known pairwise interaction potential, 

integrated from eqn (8-1), which is characterized by the parameters a, s0, and s0(dßds)0. Through 

direct differentiation of this pairwise force, the pairwise stiffness may be readily obtained. In 

eqn (9-1), which we propose to employ to characterize the behavior of the full lattice, ^ and 

XoidF/cDJo are computed from the equilibrium condition of eqn (4-2). The parameter ß may be 

computed from eqn (9-2).  The ratio ((o/(o0), from the definition in eqn (2-2), is given as 

(o/co0 = [dF„b Idx I (dFuh /dx)0 ]'
2  . (9-3) 

Both of the constituent terms composing the right-hand side of eqn (9-3) are obtained by way 

of eqn (7-2). The value for ro may be obtained from eqn (8-4), being evaluated at the 

equilibrium value of lattice spacing. 

Thus, we are able to evaluate eqn (9-1) without the use of fitting parameters and compare 

the result to the force, F, obtained by way of the triple summation of eqn (4-7). Figure 6 shows 

examples of the quality with which eqn (9-1) may describe the lattice force over a wide range 

of interatomic decay rates. The fits are for an FCC crystal, though the other crystal types (e.g., 

SC and BCC) show identical trends with comparable accuracy. The comparisons are shown to 

a compression corresponding to a stiffness of 15x the equilibrium stiffness, which, in all cases 

shown, corresponds to a maximum relative-volumetric compression at or beyond VI V0 = 0.22 

(k/kv at or beyond 0.6). The comparison is of excellent quality for the low- and mid-range decay 

rates, though it does begin to deviate somewhat for the a = 5 case. 

It should be noted that, unlike eqn (4-7), which is valid for all X states, the analytical, 

frequency-based eqn (9-1) can only apply where a vibrational frequency, co, is definable. When 

dFvib Idx changes sign (at some expansion beyond the inflection point in the lattice potential, 
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Figure 6. A comparison of the numerically computed (summed) lattice force [eqn (4-7), 
solid line] to that analytically evaluated by way of eqn (9-1) (dashed line), for an 
FCC lattice of: (a) a= 1.1; (b) a = 3; (c) a = 5. 
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Figure 6. A comparison of the numerically computed (summed) lattice force [eqn (4-7), 
solid line] to that analytically evaluated by way of eqn (9-1) (dashed line), for an 
FCC lattice of: (a) a = 1.1; (b) a = 3; (c) a = 5. 
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eqn (9-1) can no longer apply. Of course, by this level of expansion, dFldk has already changed 

sign, whereupon the lattice can no longer remain mechanically stable {i.e., any slight deviation 

from the ideally spaced lattice configuration will result in negative restoring forces, which will 

effectively tear apart the lattice). 

10. Thermal Characteristics of the Lattice 

Whereas the interatomic potential is responsible for the lattice's zero-temperature, force 

of repulsion, as computed by eqn (4-7), thermal excitations also add to the net interatomic 

repulsion. Though temperature is a direct measure of the thermal excitations, the internal energy 

of thermal excitation, Eth = (E - Epo,)v, is directly related to the temperature by way of the specific 

heat function and is, therefore, another measure of the thermal excitation. As noted in this 

paper's introduction, it is the Grüneisen function, T, that directly relates a material's thermal 

energy change to a change in pressure. Knowledge, therefore, of the T (or, alternately, i|/) 

function, in addition to the lattice potential, constitutes a complete, thermal equation of state. 

Note, however, that because the vibrational stiffness modeled in this paper is not considered to 

be a function of vibrational amplitude [i.e., infinitesimal amplitudes have been assumed as part 

of eqn (2-2)], the current analysis will necessarily compute T as a function of volume only. 

Fortunately, such an assumption is widely accepted in the community, over a large range of 

temperatures. 

In addition to being analytically related to GO by way of eqn (1-1), it was noted that the 

\|f function could be fit to (0 in another manner, again over a wide range of lattice spacings and 

interaction decay rates.  The form of the fit is given by 

y/V = y/Vm~(£  , (10-1) 

where ^ is a parameter that can be fitted for a given lattice configuration and decay rate. 

Figure 7 provides an example of the quality of this correlation. Similarly good correlations were 

noted for other lattice types and decay rates, with values for £, approaching 0.50 for low 
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stiffnesses (a ~ 1.1) and rising to approximately 0.56 for high stiffnesses, regardless of lattice 

structure (a~5). 

Though we know of no theoretical reason why the correlation described by eqn(lO-l) 

should hold true, a further measure of the quality of the correlation may be obtained by 

differentiating eqn(lO-l) with respect to V and dividing the result by eqn(lO-l) itself. 

Substitution of eqn (1-1) into the result allows for the elimination of oo, to obtain 

^-M-y/V-dy/dV . (10-2) 

Effectively, eqn (10-2) compares not the values of the terms composing eqn (10-1), but rather 

their derivatives, and is thus a more stringent comparison of the correlation. Figure 8 depicts, 

for the same lattice configuration employed in Figure 7, the two terms on the right-hand side of 

eqn (10-2). Based on the fitting form, the vertical distance between the two curves should be 

a constant, and is a measure of |. The correlation is seen to hold over the compressive domain 

and only begins to diverge at the larger lattice spacings, near and beyond the critical value of X, 

where dyldX changes sign. 

Furthermore, by evaluating \)/ and its derivative at the equilibrium lattice spacing, X<„ 

eqn (10-2) provides a nonempirical way to select a value for £. Of course, evaluating | in this 

manner does not necessarily provide the best-fit for \|f over a wide range of X—however, it does 

guarantee that the analytical function represented by eqn (10-2) will match the value and slope 

of \|/ at XQ, otherwise obtained from the triple-summation method. Whereas a good fit to 

eqn (10-1) over a wide range of X was obtained in Figure 7 with a value of £ = 0.50, the use of 

eqn (10-2) to analytically evaluate | at the XQ reference condition provides a slightly altered value 

of ^ = 0.538, which we use for the remainder of this comparison. 

A solution to the differential equation, eqn (10-2), is 

¥/y0 = ?>% {vi v0) - (3| - i/r0) (vi v</3 . (io-3) 
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When we compare this explicit form for \\r to that computed from the pairwise summation by 

way of eqns (7-2), (7-3), and (8-4), we find, in Figure 9a, a good match into the compressive 

regime, with a divergence noted in the expanded states of the lattice, near and beyond the 

maximum in \|f. If we invert \\r from Figure 9a and express the result in terms of T, as in 

Figure 9b, we see that at high compressions, results may deviate as well. The reason here is 

clear: in order that rx^0 = 2/3, |, must necessarily take on a value of 1/2. As noted previously, 

values for £, required to fit eqn(lO-l) fall in the 0.5 to 0.56 range. What this says is that 

eqn (10-1) is, at best, a fit but that the range of lattice spacing over which this fit applies can be 

quite large, indeed. Recall, as well, that V/V0 = (XJXQ)
3
, and so divergence of the fit at a relatively 

small value of X corresponds to an extremely compressed state in terms of V. 

Eqn (1-1) may be integrated, in light of eqn (10-3), to recover a functional form for the 

lattice frequency. Again, like eqns (10-2) and (10-3), this computed frequency is based upon 

the correlation cited in eqn (10-1).  The result is 

CD/CD0 = [3r01 (Ao IX - 1) + l]1/? . (10-4) 

Figure 9c shows the analytically computed frequency of eqn (10-4) compared to the summed 

value for w/(00, acquired from eqn (9-3) by way of the triple summation of eqn (7-2). To more 

fully ascertain the effect of the divergence noted in Figures 8 and 9a, we zoom in on the low- 

frequency, expanded lattice region of Figure 9c and present the result as Figure 9d. 

Even though the parameter ^ may be obtained from known material properties at the XQ 

reference state, the fact remains that eqn (10-3) is still a simplified fit to the actual functional 

form exhibited by the \|/ variable. At large compressions, the form of eqn (10-3) may diverge 

from data. At large expansions, as well, there is a rather notable departure of eqn (10-3) from 

the actual value for \|f. Because values for Xstab IXQ, as given in Table 4, are large for small a, 

the analytical equations deriving from the fit to eqn (10-1) should be accurate at the nominal 

lattice spacing and to quite an extent into the expanded regime for small a. By contrast, for 

large values of a, the analytical fit associated with eqn (10-3) will be valid over a much smaller 

range of expanded states because the XQ reference state is at the point of greatest curvature in the 
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Figure 9. A comparison of the computed (summed) lattice properties to the analytical fit 
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\|/(?i) curve. Clearly, the eventual solution to this dilemma is a better-fitting functional form for 

\|/, in preference to eqn(10-3). Nonetheless, the simplicity offered by eqn(lO-l) and the 

equations derived from it will help us to formulate, in the next section, a complete, thermal 

equation of state, capable of modeling general thermodynamic transitions and not only zero- 

temperature ones. 

Interestingly, in the low-a limit, where £, approaches 1/2 and T0 (see Table 3) approaches 

2/3, we have from eqns (10-3) and (10-4) that y = 3/2 • V and w - X'2. The conclusions, in this 

limiting case only, are that: T is a constant, equal to 2/3; X5!ah approaches infinity; and the 

vibrational stiffness never changes sign, such that co is defined out to infinite lattice separation. 

11.  A Frequency-Based Analytical Equation of State 

The lattice force description, given by eqn (9-1), has been shown to describe the behavior 

of SC, BCC, and FCC lattices over a wide range of lattice spacings and interatomic, interaction- 

decay rates, a. When given a pairwise potential, no fitting parameters are required in order to 

describe the mechanical behavior of the lattice. By contrast, the semi-empirical equation-of-state 

form given by eqn (2-1), similar in form to eqn (9-1), requires one fitting parameter to describe 

the functional behavior of \\r, since there is no pairwise potential from which eqn (2-1) derives. 

The semi-empirical form, eqn (2-1), does, however, have one advantage over eqn (9-1)—that it 

may be readily integrated, because of the \y term, to yield the lattice potential as 

Epo, = -Eb ((OH)* [1 - lntw/Wof ]   , (11-1) 

whereas eqn (9-1) cannot be integrated without first specifying the manner in which co is coupled 

to X. 

However, begining with the lattice force given by eqn (9-1) and substituting the observed 

correlation given by eqn (10-1) into it [in effect, multiplying by unity in the form of 

((o/co0)
? • (X/Xfl)4/ (\|f/y0)], one may obtain 
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-XAdFldX\ 
= V(3ro) * ^2/V • (<aH)G*»ln(w/(O0)   . (11-2) 

In deriving eqn(ll-2), use has been made of the definition, given in (1-1), that y = V/r. A 

comparison of this result to eqn(2-l) reveals identical forms with but one exception—in the 

semi-empirical form, the exponent on the lattice frequency term is K, whereas in the present 

analysis, it is (JE,+ ß). Based on the the values of £, and ß determined for the lattices studied, one 

would expect to find values for the exponent roughly in the 4/3 to 5/3 range. By contrast, values 

for K display a range of 2/3 to 4/3. 

The reason that the semi-empirical eqn (2-1) retained K as the exponent on to arose from 

the mistaken belief that to remained definable out to infinite expansions and that the form of the 

potential, eqn (11-1), should continue to fit the data as X -> <». In contrast, the current analysis, 

leading to the explicit, triple-summation calculation of dFvib/dx and co, has shown that at large 

enough expansions the vibrational stiffness changes sign and, thus, the characteristic lattice 

frequency becomes undefined beyond that point. Acknowledging, therefore, the inability of any 

frequency-based equation of state for solids to capture the highly expanded behavior of the lattice 

potential, the requirement for retaining the exponent on to equal to the value K is no longer 

imperative. 

Unlike eqn (9-1), eqn (11-2) now becomes directly integrable to acquire the energy 

potential. If we: (1) denote the sum, |+ ß, as K; (2) recall \haXF=pcX
2; (3) express -X^dFldXX 

in terms of the equilibrium bulk modulus, B0, as -\{dFldk\ = 3B0 X\; and (4) reference the 

energy zero to the equilibrium lattice state, such that Ec = Epot +Eb; then the lattice pressure and 

energy may be expressed as 

pc = FIX2 = B0 V0 ITl ■ (to/coor ln(to/to0) / \|f (11-3) 

Ec = B0 VQ /(T0 K)2 {1 -  (co/co0)
K [1 - ln(to/to0)

K ]}  . (11-4) 
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The quantity B0 V0, appearing only as a product, may be replaced by the square of the 

equilibrium, bulk sound speed, C2
0. Note also that, unlike eqn (9-1), the H02 potential, or many 

of the other popular potentials in use, eqns (11-3) and (11-4) are functions only of the lattice 

frequency and its derivatives. Lattice spacing, per se, has been removed completely as an 

independent variable! 

We may compare the results of eqns (11-3) and (11-4) to the triple-summed force and 

energy calculations given by eqns (4-5) and (4-2), respectively. We do so in Figure 10 for two 

cases of a. In compression (Figures 10b and lOd), the analytical result for F is within 2% of the 

summed result to a relative lattice spacing of 0.584 (V/V0 = 0.20) in the case of a = 2, and 0.578 

(V7V0 = 0.19) in the case of a = 5. In expansion (Figures 10a and 10c), the analytical forms do 

an excellent job out to X = Xstah and rapidly diverge beyond that point. As mentioned earlier, the 

analytical forms are only defined out to the lattice spacing where w goes to zero, which is usually 

rather close in value to Xslab. From this, we may surmise that the analytical form does an 

excellent job of representing the lattice composed of discrete atoms by way of a continuous 

function, as long as the granularity of the lattice (spacing normalized by some function of a) is 

not too large. The parameter Xsmb is an approximate measure of this granularity, defining a cutoff 

point beyond which the analytical result will eventually diverge from the discretized reality of 

an actual lattice. To show that the analytical equations above are capable of capturing the highly 

expanded behavior of the lattice, when the granularity is low, we provide Figure 11, depicting 

the potential and force for an a = 1.1 lattice. In this case, the value of k^/X^ does not occur 

until a value in excess of 7.3. Thus, for lattice spacings smaller than this amount, as depicted 

in the figure, the analytical forms (dashed lines) do a good job of matching the summed 

equations (solid lines). 

Even though the fits entailed in eqns (10— 1 >—(10-4) were employed in the development 

of eqns (11-3) and (11-4), the results portrayed in Figures 10 and 11 employ the actual values 

for 0) and \\r arising from the triple summations and not some fitted form for their behavior. 

Thus, eqns (11-3) and (11-4) are seen not to require an artificially imposed functional behavior 

for \|r or to [i.e., the primary purpose of eqn (10-1) was to assist in the development of 
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Figure 11. A comparison of the summed energy and lattice force (solid lines) to the 
analytical forms of eqns (11-3) and (11-4) (dashed lines), for the FCC case of 
very low a = 1.1. 
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eqn(ll-2), and not as an end unto itself]. To determine K, we may add the individual 

calculations of ß and £, eqns (9-2) and (10-2), which has the effect of defining K to match the 

curvature of F at the reference state. When K is computed in this manner, it may be explicitly 

defined as 

K = [rvo/0+ l -3/2-r0(rfv|f/JV)0]/ro . (11-5) 

Computed values for K (and for comparison, K) are given in Table 5, for a variety of lattice 

conditions. Note that, were K to take on the value of K, eqn (11-1) would be recovered from 

(11-4). Similarly, as w—>0, Ec does not, in general, approach Eh, but rather Eh(K/K)2. Since 

Table 5 shows the values for K and K converging at low a, however, we might conclude that, 

in the low-anharmonicity limit, the analytical form should match the summed potential all the 

way to Ec = Eb, which corresponds to X —»°°. We, in fact, noted this apparent trend in Figure 11. 

One last point to note is that eqn (11-3) actually provides an even better fit to the triple- 

summed lattice-force equations than does eqn (9-1), from which it derives.   Presumably, the 

Table 5.  Values for Parameters3 K and K 

a 
K   (K) 

SCb BCC FCC 

1.1 1.23 (1.26) 1.26 (1.27) 1.26(1.28) 

1.5 1.22 (1.30) 1.30 (1.34) 1.31 (1.35) 

2 1.19 (1.36) 1.29 (1.42) 1.31 (1.43) 

2.5 1.16 (1.42) 1.27 (1.48) 1.29 (1.49) 

3 1.13 (1.46) 1.25 (1.53) 1.27 (1.53) 

4 1.09 (1.54) 1.20 (1.59) 1.22(1.59) 

5 1.05 (1.59) 1.18 (1.63) 1.18(1.63) 

Computed from principal stiffnesses only. 
For simple cubic lattice, computed from longitudinal stiffness only, as SC lattice not stable in shear, along the principal 
lattice directions. 
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approximations in the functional behavior of \\r, used to derive eqn(ll-3), compensated 

somewhat for the deviation noted in eqn(9-l) at the higher interaction decay-rates. 

Since the current modeling has T = T(V), which results from the fact that the vibrational 

stiffness was not modeled to be temperature dependent, the current results may be cast in the 

Grüneisen equation-of-state form: 

p\f - E = pc\? - Ec  . (11-6) 

Substituting eqns(ll-3) and (11-4) into eqn(ll-6) gives the following equation of state: 

pv - E = B0V0/(T0K)
2
 {[(w/o)or - 1] + K(K- l)((o/w0)

K ln(to/w0)}  . (11-7) 

12.  Comparison to Data 

As the first step in testing the merits of eqn (11-7), we will choose to compute various 

thermodynamic curves from eqn (11-7) [or eqn (11-3) from which it derives] and compare these 

results to experimental data. Since these equations are not a function of X or V, we must, 

somehow, relate them back to lattice spacing in order to actually accomplish the comparison. 

The simplest approach would be to assume the validity of eqn (10-3), which amounts to 

assuming a functional form for T. The real behavior of \|/ is, no doubt, more complicated than 

this polynomial form, and one could expect to achieve improved comparisons to data by 

customizing a fit to \|/ for each given case. Nonetheless, rather than adopting a customized \|/ 

function, the assumption of eqn (10-3), along with a fit to the single parameter £,, should provide 

immediate feedback on whether the modeling approach is on the right track. 

For the case already considered, that of specifying a pairwise potential for a lattice, all 

of the parameters required to evaluate the merits of eqn (11-7) are available from the triple- 

summation equations for the lattice energy, force, and stiffnesses. To evaluate eqn (11-7) for an 

actual crystalline material where the pairwise potential is not known, however, requires the 
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acquisition of the various model parameters by other means. Required of the model are values 

for a number of parameters at the equilibrium state. Many of them, such as B0 and V0, are 

handbook values [furthermore, only their product, defining the bulk sound speed via 

C0 = (B0 V0)
v2, appears in the model]. Others, such as T0, are widely reported in the literature as 

well, though these reported values may vary somewhat from source to source. For the volumetric 

anharmonicity, TmK), we use the approximate rule of thumb (reported here in section 8) that 

rvo/o = T|/2.6, since values for r| are provided for many materials by Rose et al.[\\ ]. In the future, 

more precise methods may be employed to directly measure the curvature of the equilibrium 

lattice force. Finally, in order to obtain K by way of eqn (11-5), a value of (dy/dV)0 is required. 

Though such a value is obtainable from material conditions at the equilibrium state, there has 

been little or no occasion to report such data in the literature. Therefore, we choose to estimate 

this parameter by selecting a value of £, (hopefully) in the vicinity of 0.5, and employing 

eqn (10-2) to evaluate (dy/dV)0 as 

(cfy/dV)0 = 4/(3 T0) - I  . (12-1) 

With all the parameters required of the model now obtainable, we may proceed with a few 

representative comparisons. We will accomplish the comparisons by calculating both the cold- 

compression curve and shock Hugoniot for several materials. The cold-compression curve is a 

direct test of eqn (11-3) in the absence of thermal effects. The shock Hugoniot, by contrast, is 

a function of both the mechanical and the thermal properties of the lattice. It may be obtained 

by eliminating E from eqn (11-7) by way of the Rankine-Hugoniot shock-energy relation 

E-E0 = (p0+p)(V0-V)/2  , (12-2) 

which governs internal energy across a shock wave. For the reference Hugoniot originating from 

the equilibrium lattice condition, both E0 and p0 are zero. 

The quality of this match will test not only eqn (9-1) but also the observed correlation 

of eqn (10-1), both of which have fed into the formulation of eqns(ll-3), (11-4), and, 
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ultimately, (11-7). Comparisons to silver, aluminum, copper, and stainless steel are shown in 

Figures 12-15, with the corresponding parameters given in Table 6. The comparisons to both 

the cold-compression and shock-Hugoniot data for these representative materials are very good 

to a number of megabars of compression before, in some cases, diverging. And as said 

previously, the application of a more general form on \|r, in preference to the assumed form of 

eqn (10-3), can further improve the correlation to data. The purpose, however, in retaining the 

simplified assumption of eqn (10-3) is merely to demonstrate the general validity of the method 

and approach, as laid out in this paper. Further refinements to the model, with the intent to 

improve correlations to data, would, at this time, serve only to obfuscate the simplicity of this 

introductory report, which lays out a static-atomic paradigm for lattice vibration. Perhaps of 

more importance, however, is the fact that above several (1 to 2) megabars of pressure, Mitchell 

et al. [26] note that shocked metals are prone to melting. We might therefore expect that a 

model, such as the present one, which presumes the material to remain in the solid state, might 

no longer calibrate to the very high shock pressure data. 

Table 6.  Parameters for Experimental Comparison 

c0=(B0v0y
2 

(m/s) 
W0 

(kg/m3) 
To r   a 1

 vo/0 5 Kb (dy/dV)0
c 

Ag 3221 10490 2.22 2.29 0.500 1.33 0.10 

Al 5189 2700 2.03 1.84 0.716 1.49 -0.06 

Cu 3995 8930 2.02 2.10 0.520 1.32 0.14 

St. Steel 4571 7896 1.81 2.00 0.550 1.38 0.19 

a Selected in vicinity of TVOK> = T]/2.6. Values for r\ obtained from Rose et al. [11]. 
Computed by way of eqn (11-5). 

c Computed by way of eqn (12-1). 

We take brief pause, however, to consider one difference noted between the analysis and 

the experimental data—and that is the generally low values of T0 computed in Table 3. An 

examination of the modes constituting y, as shown in Figure 5, can shed some light on this 

subject. From this figure, we note that the transverse mode is more stable than the longitudinal 
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v/v„ 

(a) 

VA/„ 

(b) 

Figure 12. The cold-compression and shock-Hugoniot curves for silver: (a) to 
1.8 megabars; (b) to 5 megabars. Note that cold-compression data [21] are 
filled symbols and Hugoniot data [22,23] are open symbols. 
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(a) 

1.00 

v/v„ 

(b) 

Figure 13. The cold-compression and shock-Hugoniot curves for aluminum: (a) to 
2.5 megabars; (b) to 11 megabars. Note that cold-compression data [16,24,25] 
are filled symbols and Hugoniot data [23,26] are open symbols. 
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V/V„ 

(b) 

Figure 14. The cold-compression and shock-Hugoniot curves for copper: (a) to 
8 megabars; (b) to 25 megabars. Note that cold-compression data [21,24] are 
filled symbols and Hugoniot data [23,26] are open symbols. 
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Figure 15. The cold-compression- and shock-Hugoniot curves for stainless steel to 
4 megabars. Note that cold-compression data [11] are filled symbols and 
Hugoniot data [23] are open symbols. 
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one, in that \j/y remains defined to a larger X than does yL. Let us keep in mind, here, that the 

L and T modes employed in this analysis represent but three of the many frequency modes of the 

lattice and that, in reality, the true \jr will be composed of all the frequency modes and not just 

these three. 

The makeup of the aggregation relation, eqn (7-1), is such that as soon as any vibrational 

mode goes unstable (CD, —> 0), the aggregated (O must do so as well. And though the behavior of 

the aggregated \|f tracks the more stable (larger) \\rT at larger compressions, we do, in fact, see 

that \|/ tracks the less stable \\rL at expansions beyond Xs!ab, the maximum in the \\r curve. If there 

exists in the lattice a mode less stable than the principal L mode considered in this report, then 

the aggregated \|f should instead track that least-stable mode as the lattice expansion approaches 

the stability limit of (D—>0. The net effect of the modal coupling of eqn (7-1) is that, when 

moving from a compressed lattice state to one of expansion, vf begins to deviate from the 

component \)/ associated with the most-stable mode of the lattice, and asymptotes to the behavior 

of the least-stable lattice mode. 

The lowering of \|/ with increased X, arising from the influence of the least stable lattice 

mode, amounts to a net increase in T over what the stable mode would have established (since 

r = VA|/"). The fact that values for ro, as calculated in Table 3, are lower than comparable 

experimental values allows us to conclude that the principal L vibrational mode considered in this 

study was not the least-stable mode of the lattice. Whereas we see little deviation between \y and 

\jfT, in Figure 5, at the k^ reference condition (\|/L only exerts profound influence at larger 

expansions), the higher values of T provided by experimental data suggest that the least-stable 

mode, in reality, is already influencing \|f at the reference state, XQ. This brief analysis suggests 

that future efforts along this line of attack might provide improved results by examining the least 

and most stable lattice modes, as opposed to the modes associated with the principal directions 

of the lattice structure. 
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13.  Conclusions 

This report details a simple, static-atomic approach for computing the characteristic 

vibrational behavior of an atomic lattice, when the properties of the pairwise interaction are 

given. At the core of the method is the understanding that, when atomic interactions are 

accounted for beyond the extent of nearest neighbors, the vibrational and volumetric stiffnesses 

are, by necessity, functionally distinct. Such a distinction is at odds with virtually all prior 

analytical treatments of the subject [2,5,6-9], perhaps because accounting for the interactions of 

nonnearest neighbors in three dimensions has, before now, never been achievable in a 

straighforward, simple manner. Admittedly, the stiffness is computed along only the principal 

axes of the lattice and so anisotropy in the stiffness is not accounted for. Nonetheless, these 

limitations are the same employed in a number of earlier analyses on the subject [2,5]—analyses 

that have proved valuable. 

The results of employing the method are equations involving triple summations, which 

are able to provide the lattice potential, interatomic force, volumetric- and characteristic- 

vibrational stiffnesses, as well as the Grüneisen function for the lattice—in essence, the complete 

equation of state for the material. An analysis was performed to show how the mechanical 

behavior of the lattice compares to the behavior of the constituent pairwise interaction. Results 

also confirmed the distinct functional nature of the volumetric and vibrational stiffnesses of the 

lattice. 

By examining the current results in light of a recently published semi-empirical model, 

the triple-summation equation for lattice force could be cast in a closed-form analytical equation, 

in terms of the characteristic vibrational behavior of the lattice, and without the use of fitting 

parameters. The thermal properties of the computed lattice were shown, and an empirical 

correlation was observed between the characteristic vibrational frequency of the lattice and its 

derivative. This correlation seemed valid, over a wide range of stiffnesses, for all but the largest 

expansions and vanishingly small compressions. The correlation, when adopted, translates into 

analytically specifiable functional forms for T, ly, and GO. 
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When the analytical functional form put forth for the mechanical force in the lattice is 

combined with the correlation found to govern the thermal properties of the lattice, a 

comprehensive, thermal equation of state is established. This equation, it turns out, is identical 

in form to the recently proposed semi-empirical form [10], but for the value of a single exponent. 

Because the form of the equation of state is in terms of the characteristic vibrational frequency 

of the lattice, this analytical equation of state is only valid at states where the characteristic 

frequency is defined. The current analysis has determined that, at some level of expansion 

beyond the inflection point of the lattice potential, the vibrational stiffness changes sign and, thus, 

the characteristic vibrational frequency becomes undefined. Therefore, the analytical equation 

of state proposed will be unable to make thermodynamic predictions for lattice separations 

beyond this critical value of lattice spacing. 

A comparison of the analytical equation of state was performed against cold-compression 

and shock-Hugoniot data for several materials. Without a given pairwise interaction known to 

govern the behavior of the lattice, and because the model is a function only of the lattice's 

vibrational frequency and its derivatives, an assumption had to be made about the the manner in 

which the vibrational frequency varies with lattice spacing. The assumption adopted was the 

simplest possible—namely, that the vibrational behavior of the actual lattice was identical in form 

to that noted (in the pairwise-interaction study) by the correlation of eqn (10-1). That assumption 

requires the specification of a single scalar parameter, which is known to lie in the vicinity of 

1/2 (the low-anharmonicity limit for the parameter). Though better correlations with data are 

obtainable by deviating from this assumption, the assumption was nonetheless retained, to 

highlight both the simplicity of the model and its ability to predict the compressive and thermal 

behavior of an actual lattice over a wide change in volume, corresponding to several megabars 

of pressure. 
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J SHANER MS F670 
G CANAVAN MS F675 
R GREINER MS G740 
J HILLS    MS G770 
B HOGAN MS G770 
J BOLSTAD MS G787 
J WALSH MS G787 
R DAVIDSON MS K557 
R HENNINGER MS K557 N6 
T ROLLET MS K574 
PHOWE  MSP915 
W DEAL MS P915 
J KENNEDY MS P915 
A ROACH MS P915 
W HEMSING MS P940 
E POGUE MS P940 
J MCAFEE MS P950 
D PAISLEY MS P950 
L PICKLESIMER MS P950 
PO BOX 1663 
LOS ALAMOS NM 87545 
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DIRECTOR 
LANL 
ATTN R WARNES MS P950 
S SHEFFIELD MS P952 
D MANDELL 
KMARK 
S J MOSSO 
L SCHWALBE 
PO BOX 1663 
LOS ALAMOS NM 87545 

DIRECTOR 
SANDIA NATL LABS 
ATTN B LEVIN ORG 7816 
L N KMETYK 
R REEDER 
J SOUTHWARD 
C KONRAD 
K LANG 
PO BOX 5800 
ALBUQUERQUE NM 87185 

35     DIRECTOR 
SANDIA NATL LABS 
ATTN E H BARSISMS-031 
ERIC W REECE MS-0307 
DANIEL P KELLYMS-0307 
L WEIRICK MS-0327 
R TACHAU MS-0425 
D LONGCOPE MS-0439 
D HAYES MS-0457 
J ASAY    MS-0458 
W TEDESCHI MS-0482 
J SCHULZE MS-0483 
P A LONGMIREMS-0560 
J COREY MS-0576 
ESHERTEL JRMS-0819 
A ROBINSON MS-0819 
T TRUCANO MS-0819 
J M MCGLAUN MS-0819 
R BRANNON MS-0820 
L CHHABILDASMS-0821 
J ANG       MS-0821 
M BOSLOUGH MS-0821 
L CHHABILDAS MS-0821 
D CRAWFORD MS-0821 
M FURNISH MS-0821 
CHALL   MS-0821 
W REINHART MS-0821 
P STANTON MS-0821 
M KIPP    DIV 1533 
P YARRINGTON DIV 1533 
J MCGLAWA DIV 1541 
M FORRESTAL DIV 1551 
RLAFARGEDIV 1551 
CHILLS   DIV 1822 
RONELLUMS DIV 9122 
P TAYLOR ORG 1432 
D KERNAN ORG 1433 
PO BOX 5800 
ALBUQUERQUE NM 87185 

DIRECTOR 
LLNL 
MS L35 
ATTN R E TIPTON 
D BAUM 
T MCABEE 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L122 
ATTN R PIERCE 
R ROSINKY 
O J ALFORD 
D STEWART 
T VIDLAK 
B R BOWMAN 
W DIXON 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L125 
ATTN DOUGLAS R FAUX 
NORMAN W KLINO 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
ATTN ROBERT BARKER LI59 
PO BOX 808 
LIVERMORE CA 94550 
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DIRECTOR 
LLNL 
MS L163 
ATTN MILTON FINGER 
RPERRET 
W SHOTTS 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L178 
ATTN H KRUGER 
G POMYKAL 
MICHAEL GERASSIMENKO 
PO BOX 808 
LIVERMORE CA 94550 

1        DIRECTOR 
LLNL 
ATTN W J NELLIS L299 
PO BOX 808 
LIVERMORE CA 94550 

1        DIRECTOR 
LLNL 
ATTN D WOOD L352 
PO BOX 808 
LIVERMORE CA 94550 

1       DIRECTOR 
LLNL 
ATTN STEPHEN G COCHRAN L389 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS LI80 
ATTN G SIMONSON 
A SPERO 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
ATTN FRANK A HANDLER LI82 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L282 
ATTN W TAO 
P URTIEW 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L290 
ATTN A HOLT 
J E REAUGH 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
MS L495 
ATTN D GAVEL 
JHUNTER 
E JOHANSSON 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
ATTN R M KUKLO L874 
PO BOX 808 
LIVERMORE CA 94550 

DIRECTOR 
LLNL 
ATTN G W REPP 
M J MURPHY 
A C MITCHELL 
J A MORIARTY 
R A HEINLE 
N C HOLMES 
M SHANNON 
BMDO ROBERT M HALL 
PO BOX 808 
LIVERMORE CA 94550 
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ENERGETIC MATERIALS RSCH CTR/DOE 
NEW MEXICO INST OF MINING & TECH 
ATTN DAVID J CHAVEZ 
LARRY LIBERSKY 
FRED SANDSTROM 
CAMPUS STATION 
SOCORRO NM 87801 

NASA 
LEWIS RESEARCH CENTER 
ATTN J FERRANTE 
CLEVELAND OH 44135 

NASA 
JOHNSON SPACE CENTER 
ATTN ERIC CHRISTIANSEN 
JEANNE LEE CREWS 
FREDRICH HORZ 
MAIL CODE SN3 
2101 NASA RD 1 
HOUSTON TX 77058 

APPLIED RESEARCH LAB 
ATTN JEFFREY A COOK 
10000 BURNETT ROAD 
AUSTIN TX 78758 

GM RESEARCH LABS 
ATTN J R SMITH 
WARREN MI 48090 

JET PROPULSION LABORATORY 
IMPACT PHYSICS GROUP 
ATTN ZDENEK SEKANINA 
PAUL WEISSMAN 
BOB WEST 
JAMES ZWISSLER 
MARC ADAMS 
4800 OAK GROVE DR 
PASADENA CA 91109 

MIT LINCOLN LAB 
ARMY SCIENCE BOARD 
ATTN WADE M KORNEGAY 
244 WOOD ST RM S2 139 
LEXINGTON MA 02173 

1 BOSTON UNIVERSITY 
DEPT OF PHYSICS 
ATTN ZEEV JAEGER 
590 COMMONWEALTH AVE 
BOSTON, MA 02215 

2 BROWN UNIVERSITY 
ATTN R CLIFTON (ENGNG) 
P SCHULTZ (GEO SCI) 
PROVIDENCE RI 02912 

3 CALTECH 
ATTN J SHEPHERD MS 105-50 
ANDREW P INGERSOLL MS 170-25 
THOMAS J AHRENS MS 252-21 
1201 E CALIFORNIA BLVD 
PASADENA CA 91125 

1        CALTECH 
ATTN GLENN ORTON MS 169 237 
4800 OAK GROVE DR 
PASADENA CA 91007 

3        CORNELL UNIVERSITY 
DEPT. MATERIALS SCIENCE & ENGNG 
ATTN R G GREENE 
HLUO 
A L RUOFF 
ITHACA NY 14853 

3        DREXEL UNIVERSITY 
ATTN MEM DEPT 
PHYSICS DEPT 
A ZAVALIANGOS (DEPT MAT ENGNG) 
32ND & CHESTNUT ST 
PHILADELPHIA PA 19104 

1        GEORGIA INSTITUTE OF TECHNOLOGY 
COMPUTATIONAL MODELING CENTER 
ATTN S ATLURI 
ATLANTA GA 30332-0356 

1        GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF MATL SCIENCE & ENGNG 
ATTN K LOGAN 
ATLANTA GA 30332-0245 
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1        IOWA STATE UNIVERSITY 
DEPT PHYSICS AND ASTRONOMY 
ATTN JIM ROSE 
34 PHYSICS 
AMES IA 50011 

1        UC BERKELEY 
MECHANICAL ENGINEERING DEPT 
GRADUATE OFFICE 
ATTN KEZHUN LI 
BERKELEY CA 94720 

JOHNS HOPKINS UNIVERSITY 
MAT SCI &ENGNGDEPT 
ATTN: MO LI 
102 MARYLAND HALL 
3400 N CHARLES ST 
BALTIMORE MD 21218-2689 

JOHNS HOPKINS UNIVERSITY 
APPLIED PHYSICS LAB 
ATTN TERRY R BETZER 
ALVIN R EATON 
RICHARD H KEITH 
DALE K PACE 
ROGER L WEST 
JOHNS HOPKINS ROAD 
LAUREL MD 20723 

UC DAVIS 
INST OF THEORETICAL DYNAMICS 
ATTN E G PUCKETT 
DAVIS CA 95616 

UC LOS ANGELES 
DEPT OF MAT SCIENCE & ENGNG 
ATTN J J GILMAN 
LOS ANGELES CA 90024 

UC SAN DIEGO 
DEPT APPL NECH & ENGR 
SVCSR011 
ATTN S NEMAT-NASSER 
M MEYERS 
LA JOLLA CA 92093-0411 

LOUISIANA STATE UNIVERSITY 
ATTN ROBERT W COURTER 
948 WYLIE DR 
BATON ROUGE LA 70808 

NC STATE UNIVERSITY 
ATTN YASUYUKI HORIE 
RALEIGH NC 27695-7908 

PENNSYLVANIA STATE UNIVERSITY 
ATTN   PHYSICS DEPT 
UNIVERSITY PARK PA 16802 

SOUTHWEST RESEARCH INSTITUTE 
ATTN C ANDERSON 
S A MULLIN 
J RIEGEL 
J WALKER 
PO DRAWER 28510 
SAN ANTONIO TX 78228-0510 

TEXAS A&M UNIVERSITY 
PHYSICS DEPARTMENT 
ATTN DAN BRUTON 
COLLEGE STATION TX 77843-4242 

UNIV OF ALA HUNTSVILLE 
AEROPHYSICS RSCH CTR 
ATTN GARY HOUGH 
DAVID J LIQUORNIK 
PO BOX 999 
HUNTSVILLE AL 35899 

UNIV OF ALA HUNTSVILLE 
MECH ENGRNG DEPT 
ATTN W P SCHONBERG 
HUNTSVILLE AL 35899 

UNIVERSITY OF CHICAGO 
DEPT OF THE GEOPHYSICAL SCIENCES 
ATTN G H MILLER 
5734 S ELLIS AVE 
CHICAGO IL 60637 

UNIVERSITY OF DAYTON RSCH INST 
ATTN N BRAR 
D GROVE 
A PIEKUTOWSKI 
300 COLLEGE PARK 
DAYTON OH 45469-0182 
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UNIVERSITY OF DELAWARE 
DEPT OF MECHANICAL ENGINEERING 
ATTN PROF J GILLESPIE 
DEAN R B PIPES 
PROF J VINSON 
PROF D WILKINS 
NEWARK DE 19716 

UNIVERSITY OF ILLINOIS 
PHYSICS BUILDING 
ATTN A V GRANATO 
URBANA, IL 61801 

UNIVERSITY OF MARYLAND 
ATTN PHYSICS DEPT (BLDG 082) 
COLLEGE PARK MD 20742 

UNIVERSITY OF PENNSYLVANIA 
ATTN P A HEINEY 
DEPT OF PHYSICS & ASTRONOMY 
209 SOUTH 33RD ST 
PHILADELPHIA PA 19104 

UNIVERSITY OF PUERTO RICO 
DEPT CHEMICAL ENGINEERING 
ATTN L A ESTEVEZ 
MAYAGUEZ PR 00681-5000 

UNIVERSITY OF TEXAS 
DEPT OF MECHANICAL ENGINEERING 
ATTN ERIC P FAHRENTHOLD 
AUSTIN TX 78712 

VIRGINIA POLYTECHNIC INSTITUTE 
COLLEGE OF ENGINEERING 
ATTN R BATRA 
BLACKSBURG VA 24061-0219 

AEROJET 
ATTN J CARLEONE 
SKEY 
PO BOX 13222 
SACRAMENTO CA 95813-6000 

AEROJET ORDNANCE 
ATTN P WOLF 
G PADGETT 
1100BULLOCHBLVD 
SOCORRO NM 87801 

ALLIANT TECHSYSTEMS INC 
ATTN R STRYK 
G R JOHNSON MN11-1614 
600 SECOND ST NE 
HOPKINS MN 55343 

MARVIN L ALME 
2180 LOMA LINDA DR 
LOS ALAMOS NM 87544-2769 

APPLIED RESEARCH ASSOC INC 
ATTN JEROME D YATTEAU 
5941 S MIDDLEFIELD RD SUITE 100 
LITTLETON CO 80123 

APPLIED RESEARCH ASSOC INC 
ATTN DENNIS GRADY 
FRANK MAESTAS 
SUITE A220 
4300 SAN MATEO BLVD NE 
ALBUQUERQUE NM 87110 

ATA ASSOCIATES 
ATTN W ISBELL 
PO BOX 6570 
SANTA BARBARA CA 93111 

BATTELLE 
ATTN ROBER M DUGAS 
7501 S MEMORIAL PKWY SUITE 101 
HUNTSVILLE AL 35802-2258 

BOEING AEROSPACE CO 
SHOCK PHYSICS & APPLIED MATH 
ENGINEERING TECHNOLOGY 
ATTN R HELZER 
T MURRAY 
J SHRADER 
PO BOX 3999 
SEATTLE WA 98124 

BOEING HOUSTON SPACE STN 
ATTN RUSSELL F GRAVES 
BOX 58747 
HOUSTON TX 77258 

BRIGS CO 
ATTN JOSEPH E BACKOFEN 
2668 PETERSBOROUGH ST 
HERNDON VA 20171-2443 
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1 CALIFORNIA RSCH & TECHNOLOGY 3 DYNASEN 
ATTN M MAJERUS ATTN JACQUES 
PO BOX 2229 MICHAEL CHAF 
PRINCETON NJ 08543 MARTIN LILLY 

CENTURY DYNAMICS INC 
ATTN N BIRNBAUM 
2333 SAN RAMON VALLEY BLVD 
SAN RAMON CA 94583-1613 

COMPUTATIONAL MECHANICS 
CONSULTANTS 
ATTN J A ZUKAS 
PO BOX 11314 
BALTIMORE MD 21239-0314 

20 ARNOLD PL 
GOLETACA 93117 

R J EICHELBERGER 
409 W CATHERINE ST 
BEL AIR MD 21014-3613 

ELORET INSTITUTE 
ATTN DAVID W BOGDANOFF MS 230 2 
NASA AMES RESEARCH CENTER 
MOFFETT HELD CA 94035 

CYPRESS INTERNATIONAL 
ATTN A CAPONECCHI 
1201 E ABINGDON DR 
ALEXANDRIA VA 22314 

DEFENSE TECHNOLOGY INTL. INC 
ATTN D E AYER 
THE STARK HOUSE 
22 CONCORD ST 
NASHUA NH 03060 

DESKIN RESEARCH GROUP INC 
ATTN EDWARD COLLINS 
2270 AGNEW RD 
SANTA CLARA CA 95054 

DOW CHEMICAL INC 
ORDNANCE SYSTEMS 
ATTN C HANEY 
A HART 
B RAFANIELLO 
800 BUILDING 
MIDLAND MI 48667 

ENIG ASSOCIATES INC 
ATTN J ENIG 
D J PASTINE 
M COWPERTHWAITE 
SUITE 500 
11120 NEW HAMPSHIRE AVE 
SILVER SPRING MD 20904-2633 

EXPLOSIVE TECHNOLOGY 
ATTN M L KNAEBEL 
PO BOX KK 
FAIRFIELD CA 94533 

GB TECH LOCKHEED 
ATTN JAY LAUGHMAN 
2200 SPACE PARK SUITE 400 
HOUSTON TX 77258 

GB TECH LOCKHEED 
ATTN LUCILLE BORREGO C23C 
JOE FALCON JR C23C 
2400 NASA ROAD 1 
HOUSTON TX 77058 

G E DUVALL 
5814 NE 82ND COURT 
VANCOUVER WA 98662-5944 

DYNA EAST CORP 
ATTN P C CHOU 
R CICCARELLI 
WFLIS 
3620 HORIZON DRIVE 
KING OF PRUSSIA PA 19406 

GDLS 
38500 MOUND RD 
ATTN W BURKE MZ436-21-24 
G CAMPBELL MZ436-30-44 
D DEBUSSCHER MZ436-20-29 
J ERIDON MZ436-21-24 
W HERMAN MZ 435-01-24 
S PENTESCU MZ436-21-24 
STERLING HTS MI 48310-3200 
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GENERAL RESEARCH CORP 
ATTN A CHARTERS 
T MENNA 
PO BOX 6770 
SANTA BARBARA CA 93160-6770 

GRC INTERNATIONAL 
ATTN TIMOTHY M CUNNINGHAM 
5383 HOLLISTER AVE 
SANTA BARBARA CA 93111 

KAMAN SCIENCES CORP 
ATTN J ELDER 
RICHARD P HENDERSON 
DAVID A PYLES 
FRANK R SAVAGE 
JAMES A SUMMERS 
TIMOTHY W MOORE 
THY YEM 
600 BLVD S SUITE 208 
HUNTSVILLE AL 35802 

INST OF ADVANCED TECHNOLOGY 
UNIVERSITY OF TX AUSTIN 
ATTN S J BLESS 
J CAZAMIAS 
J DAVIS 
HD FAIR 
T M KIEHNE 
D LITTLEFTELD 
M NORMANDIA 
4030-2 W BRAKER LN 
AUSTIN TX 78759 

INTERNATIONAL RESEARCH ASSOC 
ATTN D L ORPHAL 
4450 BLACK AVE 
PLEASANTON CA 94566 

INTERPLAY 
ATTN F E WALKER 
18 SHADOW OAK RD 
DANVILLE CA 94526 

ITT SCIENCES AND SYSTEMS 
ATTN J WILBECK 
600 BLVD SOUTH, SUITE 208 
HUNTSVILLE AL 35802 

R JAMESON 
624 ROWE DR 
ABERDEEN MD 21001 

KAMAN SCIENCES CORP 
ATTN DENNIS L JONES 
2560 HUNTINGTON AVE SUITE 200 
ALEXANDRIA VA 22303 

KAMAN SCIENCES CORP 
ATTN SHELDON JONES 
GARY L PADEREWSKI 
ROBERT G PONZINI 
1500 GRDN OF THE GODS RD 
COLORADO SPRINGS CO 80907 

KAMAN SCIENCES CORP 
ATTN NASIT ARI 
STEVE R DIEHL 
WILLIAM DOANE 
VERNON M SMITH 
PO BOX 7463 
COLORADO SPRINGS CO 80933-7463 

D R KENNEDY & ASSOC INC 
ATTN D KENNEDY 
PO BOX 4003 
MOUNTAIN VIEW CA 94040 

KERLEY PUBLISHING SERVICES 
ATTN G I KERLEY 
PO BOX 13835 
ALBUQUERQUE NM 87192-3835 

KTECH CORPORATION 
ATTN FRANK W DA VIES 
LARRY M LEE 
901 PENNSYLVANIA NE 
ALBUQUERQUE NM 87110 

LIVERMORE SOFTWARE TECH CORP 
ATTN J O HALLQUIST 
2876 WAVERLY WAY 
LIVERMORE CA 94550 
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1        LOCKHEED MARTIN MISSLE & SPACE 
ATTN WILLIAM R EBERLE 
PO BOX 070017 
HUNTSVILLE AL 35807 

3       LOCKHEED MARTIN MISSILE & SPACE 
ATTN M A LEVIN ORG 81 06 BLDG 598 
M R MCHENRY 
T A NGO ORG 81 10 BLDG 157 
111 LOCKHEED WAY 
SUNNYVALE CA 94088 

PHYSICS INTERNATIONAL 
ATTN R FUNSTON 
GFRAZIER 
L GARNETT 
PO BOX 5010 
SAN LEANDRO CA 94577 

PRC INC 
ATTN J ADAMS 
5166 POTOMAC DR #103 
KING GEORGE VA 22485-5824 

LOCKHEED MISSILE & SPACE CO 
ATTN JOHN R ANDERSON 
WILLIAM C KNUDSON 
S KUSUMI 0 81 11 BLDG 157 
J PHILLIPS 0 54 50 
PO BOX 3504 
SUNNYVALE CA 94088 

LOCKHEED MISSILE & SPACE CO 
ATTN R HOFFMAN 
SANTA CRUZ FACILITY 
EMPIRE GRADE RD 
SANTA CRUZ CA 95060 

LOCKHEED NASA JSC 
SPACE SCIENCE BRANCH 
ATTN JAMES HYDE 
BOX 58561 MC B22 
HOUSTON TX 77258 

MCDONNELL DOUGLAS 
ASTRONAUTICS CO 
ATTN B L COOPER 
5301 BOLSA AVE 
HUNTINGTON BEACH CA 92647 

ORLANDO TECHNOLOGY INC 
ATTN DANIEL A MATUSKA 
MICHAEL GUNGER 
PO BOX 855 
SHALIMAR FL 32579-0855 

PHYSICAL SCIENCES INC 
ATTN PETER NEBOLSINE 
20 NEW ENGLAND BUS CTR 
ANDOVER MA 01810 

RAYTHEON ELECTRONIC SYSTEMS 
ATTN R KARPP 
50 APPLE HILL DRIVE 
TEWKSBURY MA 01876 

ROCKWELL INTERNATIONAL 
ROCKETDYNE DIVISION 
ATTN H LEIFER 
16557 PARK LN CIRCLE 
LOS ANGELES CA 90049 

ROCKWELL MISSILE SYS DIV 
ATTN T NEUHART 
1800 SATELLITE BLVD 
DULUTH GA 30136 

SAIC 
ATTN MICHAEL W MCKAY 
10260 CAMPUS POINT DR 
SAN DIEGO CA 92121 

SHOCK TRANSIENTS INC 
ATTN DAVID DAVISON 
BOX 5357 
HOPKINS MN 55343 

SIMULATION & ENG CO INC 
ATTN ELSA I MULLINS 
STEVEN E MULLINS 
8840 HWY 20 SUITE 200 N 
MADISON AL 35758 

SOUTHERN RESEARCH INSTITUTE 
ATTN LINDSEY A DECKARD 
DONALD P SEGERS 
PO BOX 55305 
BIRMINGHAM AL 35255-5305 
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SRI INTERNATIONAL 
ATTN JAMES D COLTON 
D CURRAN 
R KLOOP 
R L SEAMAN 
D A SHOCKEY 
333 RAVENSWOOD AVE 
MENLO PARK CA 94025 

TELEDYNE BROWN ENGR 
ATTN JIM W BOOTH 
MARTIN B RICHARDSON 
PO BOX 070007 MS 50 
HUNTSVILLE AL 35807-7007 

ZERNOW TECHNICAL SVCS INC 
ATTN LOUIS ZERNOW 
425 W BONJTA AVE SUITE 208 
SAN DIM AS CA 91773 

SUNY STONEYBROOK 
DEPT APPL. MATH & STAT. 
ATTN J GLIMM 
STONEYBROOK NY 11794 

ABERDEEN PROVING GROUND 

DIR, USARL 
ATTN:   AMSRL-WM, I MAY 

AMSRL-WM-BC, A ZIELINSKI 
AMSRL-WM-BD, 

R PESCE-RODRIGUEZ 
A KOTLAR 

AMSRL-WM-BE, S HOWARD 
AMSRL-WM-MB, G GAZONAS 
AMSRL-WM-MC, J M WELLS 
AMSRL-WM-T, 

W F MORRISON 
T W WRIGHT 

43     DIR. USARL 
ATTN: AMSRL-WM-TA, 

W GILLICH 
S BILYK 
M BURKINS 
W BRUCHEY 
J DEHN 
G FTLBEY 
W A GOOCH 
H W MEYER 
E J RAPACKI 
J RUNYEON 

AMSRL-WM-TB, 
R FREY 
P BAKER 
R LOTTERO 
J STARKENBERG 

AMSRL-WM-TC, 
W S DE ROSSET 
T W BJERKE 
R COATES 
FGRACE 
K KIMSEY 
M LAMPSON 
D SCHEFFLER 
S SCHRAML 
G SILSBY 
B SORENSEN 
R SUMMERS 
W WALTERS 

AMSRL-WM-TD, 
S CHOU 
A M DIETRICH 
J M BOTELER 
D DANDEKAR 
K FRANK 
M RAFTENBERG 
A RAJENDRAN 
M SCHEIDLER 
S SCHOENFELD 
S SEGLETES (5 CP) 
T WEERASOORIYA 

AMSRL-WM-WD, 
J POWELL 
A PRAKASH 
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AERONAUTICAL & MARITIME 
RESEARCH LABORATORY 
ATTN N BURMAN 
R WOODWARD 
S CIMPOERU 
DPAUL 
PO BOX 4331 
MELBOURNE VIC 3001 
AUSTRALIA 

ABTEILUNG FUER PHYSIKALISCHE 
CHEMIE 
MONTANUNIVERSITAET 
ATTN E KOENIGSBERGER 
A 8700 LEOBEN 
AUSTRIA 

PRB S A 
ATTN M VANSNICK 
AVENUE DE TERVUEREN 168 BTE 7 
BRUSSELS B 1150 
BELGIUM 

ROYAL MILITARY ACADEMY 
ATTN E CELENS 
RENAISSANCE AVE 30 
B1040 BRUSSELS 
BELGIUM 

BULGARIAN ACADEMY OF SCIENCES 
SPACE RESEARCH INSTITUTE 
ATTN VALENTIN GOSPODINOV 
1000 SOFIA PO BOX 799 
BULGARIA 

1        DEFENCE RSCH ESTAB SUFFTELD 
ATTN CHRIS WEICKERT 
BOX 4000 MEDICINE HAT 
ALBERTA TIA 8K6 
CANADA 

1        DEFENCE RSCH ESTAB VALCARTIER 
ARMAMENTS DIVISION 
ATTN R DELAGRAVE 
2459 PIE XI BLVD N 
PO BOX 8800 
CORCELETTE QUEBEC GO A 1R0 
CANADA 

1       UNIVERSITY OF GUELPH 
PHYSICS DEPT 
ATTN C G GRAY 
GUELPH ONTARIO 
NIG 2W1 
CANADA 

1        CEA 
ATTN ROGER CHERET 
CEDEX 15 
313 33 RUE DE LA FEDERATION 
PARIS 75752 
FRANCE 

1        CEA 
CISI BRANCH 
ATTN PATRICK DAVID 
CENTRE DE SACLAY BP 28 
GIF SURYVETTE 91192 
FRANCE 

CANADIAN ARSENALS LTD 
ATTN P PELLETIER 
5 MONTEE DES ARSENAUX 
VILLIE DE GRADEUR PQ J5Z2 
CANADA 

DEFENCE RSCH ESTAB SUFFTELD 
ATTN D MACKAY 
RALSTON ALBERTA TOJ 2NO RALSTON 
CANADA 

CEA/CESTA 
ATTN ALAIN GEILLE 
BOX2LEBARP33114 
FRANCE 

CENTRE D'ETUDES DE GRAMAT 
ATTN SOLVE GERARD 
CHRISTIAN LOUPIAS 
PASCALE OUTREBON 
J CAGNOUX 
C GALLIC 
J TRANCHET 
GRAMAT 46500 
FRANCE 
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CENTRE D'ETUDES DE LIMEIL-VALENTON 
ATTN CHRISTIAN AUSSOURD 
JEAN-CLAUDE BOZIER 
SAINT GEORGES CEDEX 
VILLENEUVE 94195 
FRANCE 
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